Performance of Annona Plants Subjected to Different Graft Combinations, Soil Types and Iron Fertilization
Abstract
Keywords
Full Text:
Early ViewReferences
Altman, A., & Waisel, Y. (2012). Biology of root formation and development. Berlin: Springer.
Anuragi, H., Dhaduk, H. L., Kumar, S., Dhruve, J. J., Parekh, M. J., & Sakure, A. A. (2016). Molecular diversity of Annona species and proximate fruit composition of selected genotypes. 3 Biotech, 6, 204. https://doi.org/10.1007/s13205-016-0520-9
Anuragi, H., Jain, B. T., Dhaduk, H. L., & Kumar, S. (2017). Genetic association studies for fruit yield and its components and qualitative phytochemical screening in promising Annona genotypes. Research Journal of Agricultural Sciences, 8(1), 222-227. Retrieved from http://rjas.org/ViewIssue?IssueId=47
Baron, D., Amaro, A. C. E., Macedo, A. C., Dalanhol, S. J., Boaro, C. S. F., & Ferreira, G. (2018). Grafting relations in atemoya (Annona x atemoya Mabb.) plants: peroxidase and phenolic compounds. Australian Journal of Crop Science, 12(9), 1447–1453. https://doi.org/10.21475/ajcs.18.12.09.PNE1123
Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurences and uses [2nd ed.]. Weinheim, Wiley–VCH GmbH & Co. KGaA. https://doi.org/10.1002/3527602097
de Q. Pinto, A. C., Cordeiro, M. C. R., de Andrade, S. R. M., Ferreira., F. R., de C. Filgueiras, H. A., Alves, R. E., & Kinpara, D. I. (2005). Annona species. In: J. T. Williams, R. W. Smith, A. Hudges, N. Haq & C. R. Clement (Eds.). International Centre for Underutilised Crops, University of Southampton, Southampton, United Kingdom. Retrieved from https://www.alice.cnptia.embrapa.br/bitstream/doc/890581/1/pinto01.pdf
Eltayb, M. T. A., Abdel Magid, T. D., Ibrahim, A. A., & Dirar, A. M. A. (2014). Effect of grafting (rootstock) on morphological changes of scions in some Acacia species. Journal of Forest Products and Industries, 3(1), 27–36. Retrieved from https://www.academia.edu/7223701/Effect_of_grafting_rootstock_on_Morphological_Changes_of_Scions_in_some_Acacia_Species
Fallik, E., Alkalai-Tuvia, S., Chalupowicz, D., Popovsky-Sarid, S., & Zaaroor-Presman, M. (2019). Relationships between rootstock-scion combinations and growing regions on watermelon fruit quality. Agronomy, 9(9), 536. https://doi.org/10.3390/agronomy9090536
Fijałkowski, K., Kacprzak, M., Grobelak, A., & Placek, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska, 15(1), 81-92. Retrieved from https://bibliotekanauki.pl/articles/297176
Fu, X.-Y., Peng, S.-X., Yang, S., Chen, Y.-H., Zhang, J.-Y., Mo, W.-P., … Huang, X.-M. (2012). Effects of flooding on grafted annona plants of different scion/rootstock combinations. Agricultural Sciences, 3(2), 249-256. https://doi.org/10.4236/as.2012.32029
Gainza, F., Opazo, I., & Muñoz, C. (2015). Graft incompatibility in plants: Metabolic changes during formation and establishment of the rootstock/scion union with emphasis on Prunus species. Chilean Journal of Agricultural Research, 75(Supl. 1), 28-34. https://doi.org/10.4067/S0718-58392015000300004
Indriyani, N. L. P., & Karsinah. (2011). The effect of rootstocks on soursop (Annona muricata L.) grafting. ARPN Journal of Agricultural and Biological Science, 6(11), 29-32. Retrieved from http://www.arpnjournals.com/jabs/research_papers/rp_2011/jabs_1111_333.pdf
Koepke, T., & Dhingra, A. (2013). Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Reports, 32(9), 1321–1337. https://doi.org/10.1007/s00299-013-1471-9
Melkikh, A. V., & Sutormina, M. I. (2022). From leaves to roots: Biophysical models of transport of substances in plants. Progress in Biophysics and Molecular Biology, 169-170, 53-83. https://doi.org/10.1016/j.pbiomolbio.2022.01.002
Mengel, K. (1995). Iron availability in plant tissues – iron chlorosis on calcareous soils. In: J. Abadía (Ed.), Iron nutrition in soils and plants (pp. 389–397). Dordrecht, Springer. https://doi.org/10.1007/978-94-011-0503-3_53
Naim, L., El–Sebaaly, Z., Sajyan, T. K., & Sassine, Y. N. (2018). Enhancing the adaptation of sugar apple and Cherimoya to soil conditions of South Lebanon by grafting and iron fertilization. Paper presented at Proceedings of IX International Scientific Agricultural Symposium “AGROSYM 2018”, Jahorina, Bonsia and Herzegovina, 4–7 October 2018. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20193108664
Nakasone, H. Y., & Paull, R. E. (1998). Annonas. In H. Y. Nakasone & R. E. Paull (Eds.), Tropical fruits (pp. 45-75). London, UK: CAB International.
Nozoye, T., Otani, M., Senoura, T., Nakanishi, H., & Nishizawa, N. K. (2017). Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant and Soil, 418(1-2), 75–88. https://doi.org/10.1007/s11104-016-3134-4
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta–analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Yassine, F. A. (2014). State of Annona cultivation in Lebanon [Thesis]. Lebanese University, Faculty of Agriculture and Veterinary Sciences, Lebanon. https://doi.org/10.13140/RG.2.2.15812.07048
Zhang, X., Liu, H., Zhang, S., Wang, J., & Wei, C. (2019). NH4+-N alleviates iron deficiency in rice seedlings under calcareous conditions. Scientific Reports, 9(1), 12712. https://doi.org/10.1038/s41598-019-49207-9
DOI: http://doi.org/10.17503/agrivita.v44i2.2626
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.