Lettuce Canopy Area Measurement Using Static Supervised Neural Networks Based on Numerical Image Textural Feature Analysis of Haralick and Gray Level Co-Occurrence Matrix
Abstract
Keywords
Full Text:
PDFReferences
Berk, P., Stajnko, D., Belsak, A., & Hocevar, M. (2020). Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system. Computers and Electronics in Agriculture, 169, 105158. crossref
Boulard, T., Roy, J.-C., Pouillard, J.-B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering, 158, 110–133. crossref
Boyd, N. S., Gordon, R., & Martin, R. C. (2002). Relationship between leaf area index and ground cover in potato under different management conditions. Potato Research, 45, 117–129. crossref
Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75(2), 337–346. crossref
Calangian, X. A. P., Gonzales, J. Y. C., Hilario, C. A. N., Lopez, J. M. M., Rulona, B. L. E., Valencia, I. J. C., … Dadios, E. P. (2018). Vision-based canopy area measurements. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–4). Baguio City, Philippines: IEEE. crossref
Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., & Stachniss, C. (2017). Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields. International Journal of Robotics Research, 36(10), 1045–1052. crossref
Concepcion, R. S., Lauguico, S. C., Tobias, R. R., Dadios, E. P., Bandala, A. A., & Sybingco, E. (2020). Estimation of Photosynthetic Growth Signature at the Canopy Scale Using New Genetic Algorithm-Modified Visible Band Triangular Greenness Index. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS). crossref
Dang, L. M., Hassan, S. I., Suhyeon, I., Sangaiah, A. Kumar, Mehmood, I., Rho, S., … Moon, H. (2018). UAV based wilt detection system via convolutional neural networks. Sustainable Computing: Informatics and Systems, 2018, 100250. crossref
de Luna, R. G., Dadios, E. P., Bandala, A. A., & Vicerra, R. R. P. (2019). Size classification of tomato fruit using thresholding, machine learning and deep learning techniques. AGRIVITA Journal of Agricultural Science, 41(3), 586–596. crossref
Fan, X., Kawamura, K., Guo, W., Xuan, T. D., Lim, J., Yuba, N., … Wang, Z. (2018). A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass. Computers and Electronics in Agriculture, 144, 314–323. crossref
Fuentes-Pacheco, J., Torres-Olivares, J., Roman-Rangel, E., Cervantes, S., Juarez-Lopez, P., Hermosillo-Valadez, J., & Rendón-Mancha, J. M. (2019). Fig plant segmentation from aerial images using a deep convolutional encoder-decoder network. Remote Sensing, 11(10), 1157. crossref
Ge, Z.-M., Zhou, X., Kellomäki, S., Peltola, H., & Wang, K.-Y. (2011). Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment. Ecological Modelling, 222(9), 1626–1638. crossref
Gertphol, S., Chulaka, P., & Changmai, T. (2018). Predictive models for lettuce quality from internet of things-based hydroponic farm. In 2018 22nd International Computer Science and Engineering Conference (ICSEC) (pp. 1–5). Chiang Mai, TH: IEEE. crossref
Hamuda, E., Mc Ginley, B., Glavin, M., & Jones, E. (2017). Automatic crop detection under field conditions using the HSV colour space and morphological operations. Computers and Electronics in Agriculture, 133, 97–107. crossref
Hang, T., Lu, N., Takagaki, M., & Mao, H. (2019). Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Scientia Horticulturae, 252, 113–120. crossref
Haug, S., & Ostermann, J. (2015). A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In L. Agapito, M. M. Bronstein, & C. Rother (Eds.), Computer Vision - ECCV 2014 Workshops (pp. 105–116). Cham: Springer International Publishing. crossref
Hernández-Hernández, J. L., García-Mateos, G., González-Esquiva, J. M., Escarabajal-Henarejos, D., Ruiz-Canales, A., & Molina-Martínez, J. M. (2016). Optimal color space selection method for plant/soil segmentation in agriculture. Computers and Electronics in Agriculture, 122, 124–132. crossref
Jin, B. O., Kim, C. H., Kim, M. H., Baek, G. Y., Choi, E. G., Moon, B. E., … Kim, H. T. (2013). Estimate of CO2 consumption in lettuce according to the leaf area. In H. Itoh & S. Kuroki (Eds.), The 2013 IFAC Bio-Robotics Conference (pp. 71–74). Sakai, JP: Elsevier. crossref
Jindarat, S., & Wuttidittachotti, P. (2015). Smart farm monitoring using Raspberry Pi and Arduino. In 2015 International Conference on Computer, Communications, and Control Technology (I4CT) (pp. 284–288). Kuching, MY: IEEE. crossref
Kierzkowski, D., Runions, A., Vuolo, F., Strauss, S., Lymbouridou, R., Routier-Kierzkowska, A.-L., … Tsiantis, M. (2019). A growth-based framework for leaf shape development and diversity. Cell, 177(6), 1405–1418. crossref
Lauguico S. C., Concepcion, R. S., Alejandrino, J. D., Tobias, R. R., Macasaet, D. D., & Dadios, E. P. (2020). A comparative analysis of machine learning algorihms modeled from machine vision-based lettuce growth stage classification in smart aquaponics. International Journal of Enivronmental Science and Development, 11(9). crossref
Loresco, P. J., Valenzuela, I., Culaba, A., & Dadios, E. (2019). Viola-jones method of marker detection for scale-invariant calculation of lettuce leaf area. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–5). Baguio City, Philippines: IEEE. crossref
Meng, R.-Q., Cui, S.-G., Zhang, Y.-L., Wu, X.-L., & He, L. (2018). 2In Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018 (pp. 6590–6594). Shenyang, China: IEEE. crossref
Mortensen, A. K., Bender, A., Whelan, B., Barbour, M. M., Sukkarieh, S., Karstoft, H., & Gislum, R. (2018). Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation. Computers and Electronics in Agriculture, 154, 373–381. crossref
Rahman, S., Duursma, R. A., Muktadir, M. A., Roberts, T. H., & Atwell, B. J. (2018). Leaf canopy architecture determines light interception and carbon gain in wild and domesticated Oryza species. Environmental and Experimental Botany, 155, 672–680. crossref
Saleem, G., Akhtar, M., Ahmed, N., & Qureshi, W. S. (2019). Automated analysis of visual leaf shape features for plant classification. Computers and Electronics in Agriculture, 157, 270–280. crossref
Sinha, S. K., Padalia, H., Dasgupta, A., Verrelst, J., & Rivera, J. P. (2020). Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 86, 102027. crossref
Stoleru, V., Stratulat, C., Teliban, G., Padureanu, S., Patras, A., Burlica, R., … Beniuga, O. (2018). Morphological, physiological and productive indicators of lettuce under non-thermal plasma. In EPE 2018 - Proceedings of the 2018 10th International Conference and Expositions on Electrical And Power Engineering (pp. 0937–0942). Iasi, Romania: IEEE. crossref
Tian, Y.-W., & Wang, X.-J. (2009). Analysis of leaf parameters measurement of cucumber based on image processing. In 2009 WRI World Congress on Software Engineering (WCSE) (pp. 34–37). Xiamen, China: IEEE. crossref
Wang, Y., Jin, G., Shi, B., & Liu, Z. (2019). Empirical models for measuring the leaf area and leaf mass across growing periods in broadleaf species with two life histories. Ecological Indicators, 102, 289–301. crossref
Xie, Q., Huang, W., Liang, D., Chen, P., Wu, C., Yang, G., … Zhang, D. (2014). Leaf area index estimation using vegetation indices derived from airborne hyperspectral images in winter wheat. In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (pp. 3586–3594). China: IEEE. crossref
Zhang, L., Weckler, P., Wang, N., Xiao, D., & Chai, X. (2016). Individual leaf identification from horticultural crop images based on the leaf skeleton. Computers and Electronics in Agriculture, 127, 184–196. crossref
Zou, J., Zhang, Y., Zhang, Y., Bian, Z., Fanourakis, D., Yang, Q., & Li, T. (2019). Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Scientia Horticulturae, 257, 108725. crossref
DOI: http://doi.org/10.17503/agrivita.v42i3.2528
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.