Tomato Growth Stage Monitoring for Smart Farm Using Deep Transfer Learning with Machine Learning-based Maturity Grading
Abstract
Keywords
Full Text:
PDFReferences
Burpee. (n.d.) Top 10 tomato solutions. Retrieved from website
de Luna, R. G., Baldovino, R. G., Cotoco, E. A., de Ocampo, A. L. P., Valenzuela, I. C., Culaba, A. B., & Gokongwei, E. P. D. (2017). Identification of Philippine herbal medicine plant leaf using artificial neural network. In 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–8). DOI
de Luna, R. G., Dadios, E. P., Bandala, A. A., & Vicerra, R. R. (2019). Size classification of tomato fruit using thresholding, machine learning and deep learning technique. AGRIVITA Journal of Agricultural Science, 586–596. DOI
Dimatira, J. B. U., Dadios, E. P., Culibrina, F., Magsumbol, J., Cruz, J. D., Sumage, K., … Gomez, M. (2016). Application of fuzzy logic in recognition of tomato fruit maturity in smart farming. In 2016 IEEE Region 10 Conference (TENCON) (pp. 2031–2035). DOI
El-Bendary, N., El Hariri, E., Hassanien, A. E., & Badr, A. (2015). Using machine learning techniques for evaluating tomato ripeness. Expert Systems with Applications, 42(4), 1892–1905. DOI
Islam, M. Z., Mele, M. A., & Kang, H.-M. (2018). Gaseous, physicochemical and microbial performances of silicon foliar spraying techniques on cherry tomatoes. AGRIVITA Journal of Agricultural Science, 40(2), 185–192. DOI
Kandi, S. G. (2010). Automatic defect detection and grading of single-color fruits using HSV (Hue, Saturation, Value) color space. Journal of Life Sciences, 4(7), 39–45. Retrieved from PDF
Lesaca, P. R. A. (2019, February 15). There is gold in tomatoes. Business Diary Philippines. Retrieved from website
Liberato, M. O. (2018). Off-season production of tomato (Lycopersicon esculentum L.) under different shading and mulching materials. KnE Social Sciences, 3(6), 947–953. DOI
Malik, M. H., Zhang, T., Li, H., Zhang, M., Shabbir, S., & Saeed, A. (2018). Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm. IFAC-PapersOnLine, 51(17), 431–436. DOI
Mohammed, F. G., & Amer, W. A. (2017). Color-based for tree yield fruits image counting. International Journal of Science and Research (IJSR), 6(12), 69–73. DOI
Ninawe, P., & Pandey, S. (2014). A completion on fruit recognition system using K-Nearest Neighbors algorithm. International Journal of Advanced Research in Computer Engineering and Technology, 3(7), 2352–2356. Retrieved from PDF
Oppenheim, D., Edan, Y., & Shani, G. (2017). Detecting tomato flowers in greenhouses using computer vision. International Journal of Computer and Information Engineering, 11(1), 104–109. Retrieved from website
Prihatiningsih, N., Djatmiko, H. A., & Rochminarsi, E. (2011). Applications of potassium fertilizer and Bacillus sp. biopesticide for increasing tomato resistance to bacterial wilt disease. AGRIVITA Journal of Agricultural Science, 33(1), 8–14. Retrieved from website
PSA. (2019). Major vegetables and root crops quarterly bulletin, July-September 2019. Philippine Statistics Authority. Retrieved from website
Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: Fruit counting based on deep simulated learning. Sensors, 17(4), 905. DOI
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system using deep neural networks. Sensors, 16(8), 1222. DOI
Semary, N. A., Tharwat, A., Elhariri, E., & Hassanien, A. E. (2015). Fruit-based tomato grading system using features fusion and support vector machine. In D. Filev, J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski, … S. Zadrozny (Eds.), Advances in Intelligent Systems and Computing (vol. 323) (pp. 401–410). Cham, Switzerland: Springer. DOI
Siriborvornratanakul, T. (2018). Enhancing user experiences of mobile-based augmented reality via spatial augmented reality: Designs and architectures of projector-camera devices. Advances in Multimedia, 2018(8194726), 1–17. DOI
Sun, J., He, X., Ge, X., Wu, X., Shen, J., & Song, Y. (2018). Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture, 8(12), 196. DOI
Valenzuela, I. C., Puno, J. C. V, Bandala, A. A., Baldovino, R. G., de Luna, R. G., De Ocampo, A. L., … Dadios, E. P. (2017). Quality assessment of lettuce using artificial neural network. in 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–5). DOI
Ware, M. (2017). Everything you need to know about tomatoes. Medical News Today. Retrieved from website
Yamamoto, K., Guo, W., Yoshioka, Y., & Ninomiya, S. (2014). On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors, 14(7), 12191–12206. DOI
Yossy, E. H., Pranata, J., Wijaya, T., Hermawan, H., & Budiharto, W. (2017). Mango fruit sortation system using neural network and computer vision. Procedia Computer Science, 116, 596–603. DOI
DOI: http://doi.org/10.17503/agrivita.v42i1.2499
Copyright (c) 2020 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.