Effect of Castanopsis megacarpa Extract on Mortality, Longevity Development and Feeding of Crocidolomia pavonana Larvae

Edy Syahputra, Kukuh Hernowo, Riko Riko


As several reports of impacts arise due to the use of synthetic insecticides, the investigation for safer alternative insecticides should be continued. Using plant material that has several bioactivities is a promising way out to control insect pest. The objective of this study was to evaluate the effect of leaf and seed extract of Castanopsis megacarpa on mortality, longevity development and feeding preference of Crocidolomia pavonana larvae. Extraction conducted by infusion method. The bioassay assesment was carried out using the residual method. The concentration-mortality relationship was analyzed by probit. The antifeedant test was tested using choice and no-choice methods. Both extracts showed the same strong insecticidal activity, LC50 of 0.18% (leaf) and 0.12% (seed). Leaf and seed extracts at concentrations equivalent to LC50 and LC75 in both methods used showed consistent antifeedant properties. The antifeedant activity of extracts in the no-choice method at both concentrations showed a range of activities of 40.1%-53.7% (leaf) and 74.4%-82.7% (seed) extracts. The leaf and seed extracts of C. megacarpa did not significantly extend the larval development period. Plant material that has more than one bioactivity will be better for suppress the insect pest populations in the field.


Antifeedant; Botanical insecticides; Castanopsis megacarpa; Lethal effects

Full Text:



Amoabeng, B. W., Johnson, A. C., & Gurr, G. M. (2019). Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Applied Entomology and Zoology, 54(1), 1–19. https://doi.org/10.1007/s13355-018-00602-0

Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, development indices and morphogenetic variation of plant extracts against Spodoptera litura (Fab.) (Lepidoptera : Noctuidae). Journal of Entomology and Zoology Studies, 1(4), 87–96. Retrieved from http://www.entomoljournal.com/vol1Issue4/Issue_aug_2013/25.1.pdf

Arnason, J. T., Sims, S. R., & Scott, I. M. (2012). Natural products from plants as insecticides. In Encyclopedia of Life Support Systems (EOLSS) (pp. 1–8). Retrieved from http://www.eolss.net/sample-chapters/c06/e6-151-13.pdf

Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87(7), 803–812. https://doi.org/10.1016/j.chemosphere.2011.12.082

Dubey, N. K., Shukla, R., Kumar, A., Singh, P., & Prakash, B. (2010). Prospects of botanical pesticides in sustainable agriculture. Current Science, 98(4), 479–480. Retrieved from http://www.environmentportal.in/files/Prospects of botanical pesticides in sustainable agriculture.pdf

Khater, H. F. (2012). Prospects of botanical biopesticides in insect pest management. Pharmacologia, 3(12), 641–656. https://doi.org/10.5567/pharmacologia.2012.641.656

Koul, O. (2008). Phytochemicals and insect control: An antifeedant approach. Critical Reviews in Plant Sciences, 27(1), 1–24. https://doi.org/10.1080/07352680802053908

Lina, E. C., Syahbirin, G., & Dadang, D. (2017). Mixed extracts formulation of Tephrosia vogelii and Piper aduncum. In 2017 The Asia-Pacific Conference on Life Sciences and Biological Engineering (p. APLSBE-812). Nagoya, Japan. Retrieved from https://www.researchgate.net/publication/316285629_Mixed_Extracts_Formulation_of_Tephrosia_vogelii_and_Piper_aduncum

Martinou, A. F., Seraphides, N., & Stavrinides, M. C. (2014). Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere, 96, 167–173. https://doi.org/10.1016/j.chemosphere.2013.10.024

Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant-herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35. https://doi.org/10.1016/j.tplants.2013.10.002

Nawrot, J., & Harmatha, J. (2012). Phytochemical feeding deterrents for stored product insect pests. Phytochemistry Reviews, 11(4), 543–566. https://doi.org/10.1007/s11101-013-9273-9

Nurtjahja, K., Kelana, T. B., Suryanto, D., Priyani, N., Rio, G., Putra, D. P., & Arbain, D. (2013). Antimicrobial activity of endemic herbs from Tangkahan Conservation Forest North Sumatera to bacteria and yeast. HAYATI Journal of Biosciences, 20(4), 177–181. https://doi.org/10.4308/hjb.20.4.177

Paul, D., & Sohkhlet, M. D. (2012). Anti-feedant, repellent and growth regulatory effects of four plant extracts on Pieris brassicae larvae (Lepidoptera: Pieridae). Open Access Scientific Reports, 1(10), 485. Retrieved from https://www.omicsonline.org/scientific-reports/2155-6202-SR-485.pdf

Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., … Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1, 441–446. https://doi.org/10.1038/s41893-018-0114-0

SAS Institute. (2008). Introduction to statistical modeling with SAS/STAT software (Book Excerpt). SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute Inc. Retrieved from http://support.sas.com/documentation/cdl/en/statugstatmodel/61751/PDF/default/statugstatmodel.pdf

Sitepu, N., & Bahar, R. (2019). Uji toksisitas ekstrak etanol kulit batang cepcepan (Castanopsis costata BL) dengan metode Brine Shrimp Lethality Test (BSLT). Borneo Journal of Pharmascientech, 3(1), 20-27. Retrieved from https://jurnalstikesborneolestari.ac.id/index.php/borneo/article/view/204

Syahputra, E. (2013). Insecticidal activities of Barringtonia sarcostachys bark extract against cabbage head caterpillar Crocidolomia pavonana (F.). Journal of the International Society for Southeast Asian Agricultural Sciences, 19(2), 8–17. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=

Syahputra, E., Prijono, D., Dadang, Manuwoto, S., & Darusman, L. K. (2006). Respons fisiologi Crocidolomia pavonana terhadap fraksi aktif Calophyllum soulattri. HAYATI Journal of Biosciences, 13(1), 7–12. https://doi.org/10.1016/S1978-3019(16)30372-2

Szczepanik, M., Grudniewska, A., Zawitowska, B., & Wawrzeńczyk, C. (2014). Structure-related antifeedant activity of halolactones with a p-menthane system against the lesser mealworm, Alphitobius diaperinus Panzer. Pest Management Science, 70(6), 953–958. https://doi.org/10.1002/ps.3634

van Loon, J. J. A., Wang, C. Z., Nielsen, J. K., Gols, R., & Qiu, Y. T. (2002). Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour. Entomologia Experimentalis et Applicata, 104(1), 27–34. https://doi.org/10.1046/j.1570-7458.2002.00987.x

Zapata, N., Budia, F., Viñuela, E., & Medina, P. (2009). Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae). Industrial Crops and Products, 30(1), 119–125. https://doi.org/10.1016/j.indcrop.2009.02.009

DOI: http://doi.org/10.17503/agrivita.v41i3.2331

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.