Population Dynamic of Scirtothrips dorsalis Hood (Thysanopetera: Thripidae) on Mango and Associated Weeds Under Low and Intensive Agricultural Practices

Affandi Affandi, Celia dela Rosa Medina, Luis Rey Ibanez Velasco, Pio Arestado Javier, Dinah Pura Tonelete Depositario, Ellina Mansyah, Hardiyanto Hardiyanto

Abstract


Population dynamic information and its influence factors are basic need for the best insect strategic control. This research objective was to descript and compare thrips S. dorsalis population dynamic on mango and associated weeds under low and intensive cultural practices. Reseacrh was conducted in PT. Trigatra Rajasa mango plantation in Ketowan, Arjasa, Situbondo, East Java, Indonesia from February 2014 to January 2015. The investigation was done through observation of S. dorsalis number associate on each mango growth stages and weeds under the canopy of mango. Arithmetic and descriptive method were applied to ensure the population oscillations pattern among phenological stages of mango and weeds under mango tree canopy. Result showed that population fluctuation of S. dorsalis was determined by growth stages of mango trees and the availability of initial built up of population. Flush growth stage was the most preferred stage which had high input agricultural practices such as fertilizer and tree conditioning and was supported for more numbers of thrips. Weeds Desmanthus leptophyllus, Achalypha indica, Azadirachta indica and Tephrosia vogelii were functioning as breeding habitat for early built-up population on mango trees. Climate factors especially rainfall was also affected population fluctuation of S. dorsalis on mango trees and weeds.

Keywords


Mango; Population; Scirtothrips dorsalis; Weeds

Full Text:

PDF

References


Affandi, dela Rosa Medina, C., Velasco, L. R. I., Javier, P. A., & Depositario, D. P. T. (2018). Development and survivorship of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in different growth stages of mango and selected weeds. AGRIVITA Journal of Agricultural Science, 40(1), 101–106. crossref

Affandi, dela Rosa Medina, C., Velasco, L. R. I., Javier, P. A., Depositario, D. P. T., Hardiyanto, & Syakir, M. (2017). Infestation pattern of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) in developing shoot and flower of mango arumanis 143. In C. A. Cangao, D. Chandrabalan, & A. Rusman (Eds.), 2017 International Symposium on Tropical Fruits (pp. 49–54). Fiji: ISTF2017. Retrieved from pdf

Akotsen-Mensah, C., Ativor, I. N., Anderson, R. S., Afreh-Nuamah, K., Brentu, C. F., Osei-Safo, D., … Avah, V. (2017). Pest management knowledge and practices of mango farmers in Southeastern Ghana. Journal of Integrated Pest Management, 8(1), 13. crossref

Aliakbarpour, H., & Md Rawi, C. S. (2010). Diurnal activity of four species of thrips (Thysanoptera: Thripidae) and efficiencies of three nondestructive sampling techniques for thrips in mango inflorescences. Journal of Economic Entomology, 103(3), 631–640. crossref

Aliakbarpour, Hamaseh, & Md Rawi, C. S. (2011). Evaluation of yellow sticky traps for monitoring the population of thrips (Thysanoptera) in a mango orchard. Environmental Entomology, 40(4), 873–879. crossref

Azmi, M. A., & Naqvi, S. N. H. (2011). Pesticide pollution, resistance and health hazards. In Pesticides - The Impacts of Pesticides Exposure (p. 26 pp.). Intech Open Access publisher. crossref

Behera, D., Munsi, P. S., & Lenka, P. C. (2014). Studies on fruit drop dynamics of mango cv. Amrapali and influence of intercropping and fertilizer on fruit retention. Journal of Crop and Weed, 10(1), 157–162. Retrieved from website

Brown, A. S. S., Simmonds, M. S. J., & Blaney, W. M. (2002). Relationship between nutritional composition of plant species and infestation levels of thrips. Journal of Chemical Ecology, 28(12), 2399–2409. crossref

Buckland, K., Reeve, J. R., Alston, D., Nischwitz, C., & Drost, D. (2013). Effects of nitrogen fertility and crop rotation on onion growth and yield, thrips densities, Iris yellow spot virus and soil properties. Agriculture, Ecosystems and Environment, 177, 63–74. crossref

Chau, A., Heinz, K. M., & Davies Jr, F. T. (2005). Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum. Entomologia Experimentalis et Applicata, 117(1), 27–39. crossref

Chaudhari, A. U., Sridharan, S., & Sundar Singh, S. D. (2017). Management of mango hopper with newer molecules and biopesticides under ultra high density planting system. Journal of Entomology and Zoology Studies, 5(6), 454–458. Retrieved from pdf

Chen, Y. S., Huang, G. D., Lan, W., Mo, Y. L., Zhou, J. A., & Pu, J. J. (2010). A preliminary survey of mango plant diseases and insect pests in Guangxi Zhuang Autonomic Region. Chinese Bulletin of Entomology, 47(5), 994-1001. Retrieved from website

de Bon, H., Huat, J., Parrot, L., Sinzogan, A., Martin, T., Malézieux, E., & Vayssières, J. F. (2014). Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agronomy for Sustainable Development, 34(4), 723–736. crossref

de Mello Prado, R. (2010). Phosphorus effects in the nutrition and growth of developing mango plants. Journal of Plant Nutrition, 33(14), 2041–2049. crossref

Derksen, A. I., Mannion, C. M., Seal, D. R., Osborne, L. S., & Martin, C. G. (2016). Direction and timing of dispersal of Scirtothrips dorsalis (Thysanoptera: Thripidae) on select ornamental host plant species in South Florida. Florida Entomologist, 99(4), 710–717. crossref

El-Shiekh, A. F. (2016). Agricultural production: Improving “Dabsha” mango trees productivity and fruit quality by biological fertilizers. American Journal of Agriculture and Forestry, 4(6), 163–167. crossref

Hansen, E. A., Funderburk, J. E., Reitz, S. R., Ramachandran, S., Eger, J. E., & McAuslane, H. (2009). Within-plant distribution of Frankliniella species (Thysanoptera:Thripidae) and Orius insidiosus (Heteroptera: Anthocoridae) in field pepper. Environmental Entomology, 32(5), 1035–1044. crossref

Hill, M. P., Macfadyen, S., & Nash, M. A. (2017). Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ, 5, e4179. crossref

Kirk, W. D. J. (1995). Feeding behavior and nutritional requirements. In B. L. Parker, M. Skinner, & T. Lewis (Eds.), Thrips Biology and Management (pp. 21–29). Boston, MA: Springer. crossref

Kulkarni, V. J. (1988). Chemical control of tree vigour and the promotion of flowering and fruiting in mango (Mangifera indica L.) using paclobutrazol. Journal of Horticultural Science, 63(3), 557–566. crossref

Kumar, V., Kakkar, G., McKenzie, C. L., Seal, D. R., & Osborne, L. S. (2013). An overview of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) biology, distribution and management. In S. Soloneski & M. Larramendy (Eds.), Weed and Pest Control - Conventional and New Challenges (pp. 53–77). IntechOpen. crossref

Lewis, T. (1997). Flight and dispersal. in T. Lewis (Ed.), Thrips as crop pests (pp. 175-196). Wallingford: CABI International.

Lu, Z., Yu, X., Heong, K., & Hu, C. (2007). Effect of nitrogen fertilizer on herbivores and its stimulation to major insect pests in rice. Rice Science, 14(1), 56–66. crossref

Mannion, C. M., Derksen, A. I., Seal, D. R., Osborne, L. S., & Martin, C. G. (2013). Effects of rose cultivars and fertilization rates on populations of Scirtothrips dorsalis (Thysanoptera: Thripidae) in Southern Florida. Florida Entomologist, 96(2), 403–411. crossref

Mannion, C. M., Derksen, A. I., Seal, D. R., Osborne, L. S., & Martin, C. G. (2014). Population dynamics of Scirtothrips dorsalis (Thysanoptera: Thripidae) and other thrips species on two ornamental host plant species in Southern Florida. Environmental Entomology, 43(4), 849–858. crossref

Md Wasim, R., & Sarkar, R. K. (2018). Efficacy of some organic and synthetic pesticide againts mango mealy bug Drosicha mangiferae Green (Hemiptera: Coccidae). International Journal of Agricultural Sciences, 10(9), 5901–5904. Retrieved from pdf

Medina, J. R., Opina, O. S., de Jesus, L. R. A., & Calumpang, S. M. F. (2005). Development of an integrated pest management program for mango in Palawan, Philippines. The Philippine Agricultural Scientist, 88(4), 453–461. Retrieved from website

Medina-Urrutia, V. M., Vázquez-García, M., & Virgen-Calleros, G. (2011). Organic mango production in Mexico: Status of orchard management. Acta Horticulturae, 894, 255–263. crossref

Moody, K., Munroe, C. E., Lubigan, R. T., & Paller, E. C. (1984). Major weeds of the Philippines. Laguna, Philippines: Weed Science Society of the Philippines. Retrieved from website

Mukherjee, I., Singh, S., Sharma, P. K., Jaya, M., Gopal, M., & Kulshrsestha, G. (2007). Extraction of multi-class pesticide residues in mango fruits (Mangiferae indica L.): Application of pesticide residues in monitoring of mangoes. Bulletin of Environmental Contamination and Toxicology, 78(5), 380–383. crossref

Narvariya, S. S., & Singh, C. P. (2018). Cultar (P333) a boon for mango production – A review. International Journal of Current Microbiology and Applied Sciences, 7(2), 1552–1562. crossref

Nation, J. L. (2001). Insect physiology and biochemistry. Boca Raton, FL: CRC Press.

Patel, B. H., Koshiya, D. J., Korat, D. M., & Vaishnav, P. R. (2010). Effect of irrigation intervals and nitrogen levels on the incidence of thrips, Scirtothrips dorsalis Hood in chilli*. Karnataka Journal of Agricultural Science, 23(2), 243–245. Retrieved from website

Peralta-Antonio, N., Rebolledo-Martínez, A., Becerril-Román, A. E., Jaén-Contreras, D., & del Angel-Pérez, A. L. (2014). Response to organic fertilization in mango cultivars: Manila, Tommy Atkins and Ataulfo. Journal of Soil Science and Plant Nutrition, 14(3), 688–700. crossref

Reitz, S. R. (2002). Seasonal and within plant distribution of Frankliniella thrips (Thysanoptera: Thripidae) in North Florida tomatoes. Florida Entomologist, 85(3), 431–439. crossref

Rukmana, R., & Sugandi, U. (1999). Gulma dan teknik pengendalian. Jakarta, ID: Kanisius.

Sarker, B. C., & Rahim, M. A. (2018). Influence of paclobutrazol on growth, yield and quality of mango. Bangladesh Journal of Agricultural Research, 43(1), 1–12. crossref

Sarker, B., Rahim, M., & Archbold, D. (2016). Combined effects of fertilizer, irrigation, and paclobutrazol on yield and fruit quality of mango. Horticulturae, 2, 14. crossref

Schuch, U. K., Redak, R. A., & Bethke, J. A. (1998). Cultivar, fertilizer, and irrigation affect vegetative growth and susceptibility of chrysanthemum to western flower thrips. Journal of the American Society for Horticultural Science, 123(4), 727–733. crossref

Seal, D. R., Klassen, W., & Kumar, V. (2010). Biological parameters of Scirtothrips dorsalis (Thysanoptera: Thripidae) on selected hosts. Environmental Entomology, 39(5), 1389–1398. crossref

Song, J. H., Kim, C. S., Yang, Y. T., Hong, S. Y., & Lee, S. C. (2013). Annual occurrent pattern of Scirtothrips dorsalis (Thysanoptera: Thripidae) on citrus trees and surrounding host plants. Korean Journal of Applied Entomology, 52(3), 185–191. crossref

Syahri, R., Widaryanto, E., & Puji Wicaksono, K. (2017). Bioactive compound from mangoes leaves extract as potential soil bioherbicide to control amaranth weed (Amaranthus spinosus Linn.). Journal of Degraded and Mining Lands Management, 4(3), 829–836. crossref

Tsai, J. H., Yue, B. S., Funderburk, J. E., & Webb, S. E. (1996). Effect of plant pollen on growth and reproduction of Frankliniella bispinosa. Acta Horticulturae, 431, 535–541. crossref

Urías-López, M. A., Salazar-García, S., & Johansen-Naime, R. (2007). Identificación y fluctuación poblacional de especies de trips (Thysanoptera) en aguacate’Hass’ en Nayarit, México. Revista Chapingo Serie Horticultura, 13(1), 49–54.

Veromann, E., Toome, M., Kännaste, A., Kaasik, R., Copolovici, L., Flink, J., … Niinemets, Ü. (2013). Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection, 43, 79–88. crossref




DOI: http://doi.org/10.17503/agrivita.v41i3.2316

Copyright (c) 2019 UNIVERSITAS BRAWIJAYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.