5-Aminolevulinic Acid Lessened Growth Suppression in Snap Bean (Phaseolus vulgaris L.) Exposed to Shallow Water Table

Haris Kriswantoro, Benyamin Lakitan, Aldes Lesbani, Andi Wijaya


Shallow water table (SWT) is an acute problem in cultivating vegetables at riparian wetland during transitional period from dry to rainy season. SWT limits volume of aerobic rhizosphere and reduces oxygen availability. Meanwhile, 5-aminolevulinic acid (ALA) has been known for its effectiveness in offsetting negative effects of abiotic stresses. The aim of this study was to evaluate effectiveness of ALA application at pre- or during continuous 20-day SWT exposure in snap bean. SWT exposures were set at depth of 5 cm (SWT-5), 10 cm (SWT-10) and 15 cm (SWT-15) below substrate surface. ALA was applied at 4 days before SWT initiation (14 DAP), mid of SWT exposure period (28 DAP), or at end of SWT exposure (38 DAP). Results of this study indicated that SWT exposure affected growth of shoots and roots, leaf water status, proline content, and SPAD value in snap bean plant. Shallowest water table (SWT-5) caused the most severe effects. Effectiveness of ALA application was depended on time difference between ALA application and onset of SWT exposure. ALA application did not significantly improve recovery of snap bean plants after SWT exposure was terminated.


Abiotic stress; Proline; Rhizosphere; Riparian wetlands; Vegetable production

Full Text:



Akram, N. A., & Ashraf, M. (2013). Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. Journal of Plant Growth Regulation, 32, 663–679. https://doi.org/10.1007/s00344-013-9325-9

Akram, N. A., Ashraf, M., & Al-Qurainy, F. (2012). Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Scientia Horticulturae, 142, 143–148. https://doi.org/10.1016/j.scienta.2012.05.007

Akram, N. A., Iqbal, M., Muhammad, A., Ashraf, M., Al-Qurainy, F., & Shafiq, S. (2018). Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma, 255, 163–174. https://doi.org/10.1007/s00709-017-1140-x

An, Y., Qi, L., & Wang, L. (2016). ALA pretreatment improves waterlogging tolerance of fig plants. PLoS ONE, 11(1), e0147202. https://doi.org/10.1371/journal.pone.0147202

Anand, V., & Oinam, B. (2020). Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sensing Letters, 11(3), 225-234. https://doi.org/10.1080/2150704X.2019.1704304

Anjum, S. A., Li, J. H., Lv, J., Zong, X. F., Wang, L., Yang, A. J., … Wang, S. G. (2016). Regulation mechanism of exogenous ALA on growth and physiology of Leymus chinensis (Trin.) under salt stress. Chilean Journal of Agricultural Research, 76(3), 314–320. https://doi.org/10.4067/S0718-58392016000300008

António, C., Päpke, C., Rocha, M., Diab, H., Limami, A. M., Obata, T., … van Dongen, J. T. (2016). Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiology, 170(1), 43–56. https://doi.org/10.1104/pp.15.00266

Anwar, A., Yan, Y., Liu, Y., Li, Y., & Yu, X. (2018). 5-aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers. International Journal of Molecular Sciences, 19(11), 3379. https://doi.org/10.3390/ijms19113379

Averina, N. G., Gritskevich, E. R., Vershilovskaya, I. V., Usatov, A. V., & Yaronskaya, E. B. (2010). Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid. Russian Journal of Plant Physiology, 57, 792–798. https://doi.org/10.1134/S1021443710060075

Bakri, Imanudin, M. S., & Masreah Bernas, S. (2015). Water retention option of drainage system for dry season corn cultivation at tidal lowland area. AGRIVITA Journal of Agricultural Science, 37(3), 237–246. https://doi.org/10.17503/Agrivita-2015-37-3-p237-246

Barunawati, N., Maghfoer, M. D., Kendarini, N., & Aini, N. (2016). Proline and specific root lenght as response to drought of wheat lines (Triticum aestivum L.). AGRIVITA Journal of Agricultural Science, 38(3), 296–302. https://doi.org/10.17503/agrivita.v38i3.972

Biswas, J. C., & Kalra, N. (2018). Effect of waterlogging and submergence on crop physiology and growth of different crops and its remedies: Bangladesh perspectives. Saudi Journal of Engineering and Technology, 3(6), 315–329. Retrieved from http://scholarsmepub.com/wpcontent/uploads/2018/07/SJEAT-36-315-329-c.pdf

Chen, G., Fan, P. S., Feng, W. M., Guan, A. Q., Lu, Y. Y., & Wan, Y. L. (2017). Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russian Journal of Plant Physiology, 64, 116–123. https://doi.org/10.1134/S1021443717010046

Donnelly, A., Yu, R., Rehberg, C., Meyer, G., & Young, E. B. (2020). Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Annals of Forest Science, 77(2), 1-12. https://doi.org/10.1007/s13595-020-00940-6

Freije, A. (2018). The mechanism behind the promotive effect of foliar application of 5-aminolevulinic acid (ALA) in tomato plants under salt stress. Journal of Advances in Agriculture, 8(1), 1415–1423. https://doi.org/10.24297/jaa.v8i1.7498

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling and Behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949

Kalsoom, U., Bennett, I., & Boyce, M. (2016). A review of extraction and analysis: Methods for studying osmoregulants in plants. Journal of Chromatography & Separation Techniques, 7(1), 1–11. https://doi.org/10.4172/2157-7064.1000315

Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science, 7, 1335.https://doi.org/10.3389/fpls.2016.01335

Lakitan, B., Lindiana, L., Widuri, L. I., Kartika, K., Siaga, E., Meihana, M., & Wijaya, A. (2019). Inclusive and ecologically-sound food crop cultivation at tropical non-tidal wetlands in Indonesia. AGRIVITA Journal of Agricultural Science, 41(1), 23-31. https://doi.org/10.17503/agrivita.v40i0.1717

Lawson, T., & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. https://doi.org/10.1146/annurev-arplant-050718-100251

Lebrun, J. D., Ayrault, S., Drouet, A., Bordier, L., Fechner, L. C., Uher, E., ... & Tournebize, J. (2019). Ecodynamics and bioavailability of metal contaminants in a constructed wetland within an agricultural drained catchment. Ecological Engineering, 136, 108-117. https://doi.org/10.1016/j.ecoleng.2019.06.012

Liu, J., Hasanuzzaman, M., Sun, H., Zhang, J., Peng, T., Sun, H., ... & Zhao, Q. (2020). Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia. Environmental and Experimental Botany, 169, 103916. https://doi.org/10.1016/j.envexpbot.2019.103916

Liu, L., Nguyen, N. T., Ueda, A., & Saneoka, H. (2014). Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regulation, 74, 219–228. https://doi.org/10.1007/s10725-014-9913-0

Manafi, E., Modarres Sanavy, S. A. M., Aghaalikhani, M., & Dolatabadian, A. (2015). Exogenous 5-aminolevulenic acid promotes antioxidative defence system, photosynthesis and growth in soybean against cold stress. Notulae Scientia Biologicae, 7(4), 486–494. https://doi.org/10.15835/nsb749654

Meihana, M., Lakitan, B., Susilawati, Harun, M. U., Widuri, L. I., Kartika, K., … Kriswantoro, H. (2017). Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. Australian Journal of Crop Science, 11(12), 1635–1641. https://doi.org/10.21475/ajcs.17.11.12.pne808

Ntukamazina, N., Onwonga, R. N., Sommer, R., Mukankusi, C. M., Mburu, J., & Rubyogo, J. C. (2017). Effect of excessive and minimal soil moisture stress on agronomic performance of bush and climbing bean (Phaseolus vulgaris L.). Cogent Food & Agriculture, 3(1), 1373414. https://doi.org/10.1080/23311932.2017.1373414

Perata, P. (2020). Ethylene signaling controls fast oxygen sensing in plants. Trends in Plant Science, 25(1), 3-6. https://doi.org/10.1016/j.tplants.2019.10.010

Pociecha, E. (2013). Different physiological reactions at vegetative and generative stage of development of field bean plants exposed to flooding and undergoing recovery. Journal of Agronomy and Crop Science, 199(3), 195–199. https://doi.org/10.1111/jac.12009

Pradhan, C., & Mohanty, M. (2013). Submergence stress: Responses and adaptations in crop plants. In G. Rout & A. Das (Eds.), Molecular Stress Physiology of Plants (pp. 331–357). India: Springer. https://doi.org/10.1007/978-81-322-0807-5_14

Rodriguez‐Dominguez, C. M., & Brodribb, T. J. (2020). Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225(1), 126-134. https://doi.org/10.1111/nph.16177

Rosas, T., Mencuccini, M., Barba, J., Cochard, H., Saura‐Mas, S., & Martínez‐Vilalta, J. (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223(2), 632-646. https://doi.org/10.1111/nph.15684

Sade, N., del Mar Rubio-Wilhelmi, M., Umnajkitikorn, K., & Blumwald, E. (2018). Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 69(4), 845–853. https://doi.org/10.1093/jxb/erx235

Santosa, M., Maghfoer, M. D., & Tarno, H. (2017). The influence of organic and inorganic fertilizers on the growth and yield of green bean, Phaseolus vulgaris L. grown in dry and rainy season. AGRIVITA Journal of Agricultural Science, 39(3), 296–302. https://doi.org/10.17503/agrivita.v39i3.646

Siaga, E., Lakitan, B., Hasbi, Bernas, S. M., Wijaya, A., Lisda, R., … Meihana, M. (2018). Application of floating culture system in chili pepper (Capsicum annum L.) during prolonged flooding period at riparian wetland in Indonesia. Australian Journal of Crop Science, 12(05), 808–816. https://doi.org/10.21475/ajcs.18.12.05.PNE1007

Sudrajat, D. J., Siregar, I. Z., Khumaida, N., Siregar, U. J., & Mansur, I. (2015). Adaptability of white jabon (Anthocephalus cadamba MIQ.) seedling from 12 populations to drought and waterlogging. AGRIVITA Journal of Agricultural Science, 37(2), 130–143. https://doi.org/10.17503/Agrivita-2015-37-2-p130-143

Sulaiman, A. A., Sulaeman, Y., & Minasny, B. (2019). A framework for the development of wetland for agricultural use in Indonesia. Resources, 8(1), 34. https://doi.org/10.3390/resources8010034

Widuri, L. I., Lakitan, B., Hasmeda, M., Sodikin, E., Wijaya, A., Meihana, M., … Siaga, E. (2017). Relative leaf expansion rate and other leafrelated indicators for detection of drought stress in chili pepper (Capsicum annuum L.). Australian Journal of Crop Science, 11(12), 1617–1625. https://doi.org/10.21475/ajcs.17.11.12.pne800

Wu, Y., Liao, W., Dawuda, M. M., Hu, L., & Yu, J. (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 87, 357–374. https://doi.org/10.1007/s10725-018-0463-8

Xiong, J. L., Wang, H. C., Tan, X. Y., Zhang, C. L., & Naeem, M. S. (2018). 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry, 124, 88–99. https://doi.org/10.1016/j.plaphy.2018.01.001

Yaish, M. W. (2015). Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genetics and Molecular Research, 14(3), 9943–9950. https://doi.org/10.4238/2015.August.19.30

Yang, Z., Chang, Z., Sun, L., Yu, J., & Huang, B. (2014). Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PloS One, 9(12), e116283. https://doi.org/10.1371/journal.pone.0116283

Ye, J. B., Chen, Q. W., Tao, T. T., Wang, G., & Xu, F. (2016). Promotive effects of 5-aminolevulinic acid on growth, photosynthetic gas exchange, chlorophyll, and antioxidative enzymes under salinity stress in Prunnus persica (L.) Batseh seedling. Emirates Journal of Food and Agriculture, 28(11), 786–795. https://doi.org/10.9755/ejfa.2016-06-647

Zhang, Z. P., Miao, M. M., & Wang, C. L. (2015). Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress. Journal of Plant Growth Regulation, 34, 637–650. https://doi.org/10.1007/s00344-015-9499-4

Zhou, H., Zhou, G., He, Q., Zhou, L., Ji, Y., & Zhou, M. (2020). Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 171, 103932. https://doi.org/10.1016/j.envexpbot.2019.103932

DOI: http://doi.org/10.17503/agrivita.v0i0.2308

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.