5-Aminolevulinic Acid Lessened Growth Suppression in Snap Bean (Phaseolus vulgaris L.) Exposed to Shallow Water Table
Abstract
Keywords
Full Text:
PDFReferences
Akram, N. A., & Ashraf, M. (2013). Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. Journal of Plant Growth Regulation, 32, 663–679. crossref
Akram, N. A., Ashraf, M., & Al-Qurainy, F. (2012). Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Scientia Horticulturae, 142, 143–148. crossref
Akram, N. A., Iqbal, M., Muhammad, A., Ashraf, M., Al-Qurainy, F., & Shafiq, S. (2018). Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma, 255, 163–174. crossref
An, Y., Qi, L., & Wang, L. (2016). ALA pretreatment improves waterlogging tolerance of fig plants. PLoS ONE, 11(1), e0147202. crossref
Anand, V., & Oinam, B. (2020). Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sensing Letters, 11(3), 225-234. crossref
Anjum, S. A., Li, J. H., Lv, J., Zong, X. F., Wang, L., Yang, A. J., … Wang, S. G. (2016). Regulation mechanism of exogenous ALA on growth and physiology of Leymus chinensis (Trin.) under salt stress. Chilean Journal of Agricultural Research, 76(3), 314–320. crossref
António, C., Päpke, C., Rocha, M., Diab, H., Limami, A. M., Obata, T., … van Dongen, J. T. (2016). Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiology, 170(1), 43–56. crossref
Anwar, A., Yan, Y., Liu, Y., Li, Y., & Yu, X. (2018). 5-aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers. International Journal of Molecular Sciences, 19(11), 3379. crossref
Averina, N. G., Gritskevich, E. R., Vershilovskaya, I. V., Usatov, A. V., & Yaronskaya, E. B. (2010). Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid. Russian Journal of Plant Physiology, 57, 792–798. crossref
Bakri, Imanudin, M. S., & Masreah Bernas, S. (2015). Water retention option of drainage system for dry season corn cultivation at tidal lowland area. AGRIVITA Journal of Agricultural Science, 37(3), 237–246. crossref
Barunawati, N., Maghfoer, M. D., Kendarini, N., & Aini, N. (2016). Proline and specific root lenght as response to drought of wheat lines (Triticum aestivum L.). AGRIVITA Journal of Agricultural Science, 38(3), 296–302. crossref
Biswas, J. C., & Kalra, N. (2018). Effect of waterlogging and submergence on crop physiology and growth of different crops and its remedies: Bangladesh perspectives. Saudi Journal of Engineering and Technology, 3(6), 315–329. Retrieved from pdf
Chen, G., Fan, P. S., Feng, W. M., Guan, A. Q., Lu, Y. Y., & Wan, Y. L. (2017). Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Russian Journal of Plant Physiology, 64, 116–123. crossref
Donnelly, A., Yu, R., Rehberg, C., Meyer, G., & Young, E. B. (2020). Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Annals of Forest Science, 77(2), 1-12. crossref
Freije, A. (2018). The mechanism behind the promotive effect of foliar application of 5-aminolevulinic acid (ALA) in tomato plants under salt stress. Journal of Advances in Agriculture, 8(1), 1415–1423. crossref
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling and Behavior, 7(11), 1456–1466. crossref
Kalsoom, U., Bennett, I., & Boyce, M. (2016). A review of extraction and analysis: Methods for studying osmoregulants in plants. Journal of Chromatography & Separation Techniques, 7(1), 1–11. crossref
Koevoets, I. T., Venema, J. H., Elzenga, J. T. M., & Testerink, C. (2016). Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science, 7, 1335. crossref
Lakitan, B., Lindiana, L., Widuri, L. I., Kartika, K., Siaga, E., Meihana, M., & Wijaya, A. (2019). Inclusive and ecologically-sound food crop cultivation at tropical non-tidal wetlands in Indonesia. AGRIVITA Journal of Agricultural Science, 41(1), 23-31. crossref
Lawson, T., & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. crossref
Lebrun, J. D., Ayrault, S., Drouet, A., Bordier, L., Fechner, L. C., Uher, E., ... & Tournebize, J. (2019). Ecodynamics and bioavailability of metal contaminants in a constructed wetland within an agricultural drained catchment. Ecological Engineering, 136, 108-117. crossref
Liu, J., Hasanuzzaman, M., Sun, H., Zhang, J., Peng, T., Sun, H., ... & Zhao, Q. (2020). Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia. Environmental and Experimental Botany, 169, 103916. crossref
Liu, L., Nguyen, N. T., Ueda, A., & Saneoka, H. (2014). Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regulation, 74, 219–228. crossref
Manafi, E., Modarres Sanavy, S. A. M., Aghaalikhani, M., & Dolatabadian, A. (2015). Exogenous 5-aminolevulenic acid promotes antioxidative defence system, photosynthesis and growth in soybean against cold stress. Notulae Scientia Biologicae, 7(4), 486–494. crossref
Meihana, M., Lakitan, B., Susilawati, Harun, M. U., Widuri, L. I., Kartika, K., … Kriswantoro, H. (2017). Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. Australian Journal of Crop Science, 11(12), 1635–1641. crossref
Ntukamazina, N., Onwonga, R. N., Sommer, R., Mukankusi, C. M., Mburu, J., & Rubyogo, J. C. (2017). Effect of excessive and minimal soil moisture stress on agronomic performance of bush and climbing bean (Phaseolus vulgaris L.). Cogent Food & Agriculture, 3(1), 1373414. crossref
Perata, P. (2020). Ethylene signaling controls fast oxygen sensing in plants. Trends in Plant Science, 25(1), 3-6. crossref
Pociecha, E. (2013). Different physiological reactions at vegetative and generative stage of development of field bean plants exposed to flooding and undergoing recovery. Journal of Agronomy and Crop Science, 199(3), 195–199. crossref
Pradhan, C., & Mohanty, M. (2013). Submergence stress: Responses and adaptations in crop plants. In G. Rout & A. Das (Eds.), Molecular Stress Physiology of Plants (pp. 331–357). India: Springer. crossref
Rodriguez‐Dominguez, C. M., & Brodribb, T. J. (2020). Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist, 225(1), 126-134. crossref
Rosas, T., Mencuccini, M., Barba, J., Cochard, H., Saura‐Mas, S., & Martínez‐Vilalta, J. (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223(2), 632-646. crossref
Sade, N., del Mar Rubio-Wilhelmi, M., Umnajkitikorn, K., & Blumwald, E. (2018). Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 69(4), 845–853. crossref
Santosa, M., Maghfoer, M. D., & Tarno, H. (2017). The influence of organic and inorganic fertilizers on the growth and yield of green bean, Phaseolus vulgaris L. grown in dry and rainy season. AGRIVITA Journal of Agricultural Science, 39(3), 296–302. crossref
Siaga, E., Lakitan, B., Hasbi, Bernas, S. M., Wijaya, A., Lisda, R., … Meihana, M. (2018). Application of floating culture system in chili pepper (Capsicum annum L.) during prolonged flooding period at riparian wetland in Indonesia. Australian Journal of Crop Science, 12(05), 808–816. crossref
Sudrajat, D. J., Siregar, I. Z., Khumaida, N., Siregar, U. J., & Mansur, I. (2015). Adaptability of white jabon (Anthocephalus cadamba MIQ.) seedling from 12 populations to drought and waterlogging. AGRIVITA Journal of Agricultural Science, 37(2), 130–143. crossref
Sulaiman, A. A., Sulaeman, Y., & Minasny, B. (2019). A framework for the development of wetland for agricultural use in Indonesia. Resources, 8(1), 34. crossref
Widuri, L. I., Lakitan, B., Hasmeda, M., Sodikin, E., Wijaya, A., Meihana, M., … Siaga, E. (2017). Relative leaf expansion rate and other leafrelated indicators for detection of drought stress in chili pepper (Capsicum annuum L.). Australian Journal of Crop Science, 11(12), 1617–1625. crossref
Wu, Y., Liao, W., Dawuda, M. M., Hu, L., & Yu, J. (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regulation, 87, 357–374. crossref
Xiong, J. L., Wang, H. C., Tan, X. Y., Zhang, C. L., & Naeem, M. S. (2018). 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiology and Biochemistry, 124, 88–99. crossref
Yaish, M. W. (2015). Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genetics and Molecular Research, 14(3), 9943–9950. crossref
Yang, Z., Chang, Z., Sun, L., Yu, J., & Huang, B. (2014). Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PloS One, 9(12), e116283. crossref
Ye, J. B., Chen, Q. W., Tao, T. T., Wang, G., & Xu, F. (2016). Promotive effects of 5-aminolevulinic acid on growth, photosynthetic gas exchange, chlorophyll, and antioxidative enzymes under salinity stress in Prunnus persica (L.) Batseh seedling. Emirates Journal of Food and Agriculture, 28(11), 786–795. crossref
Zhang, Z. P., Miao, M. M., & Wang, C. L. (2015). Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress. Journal of Plant Growth Regulation, 34, 637–650. crossref
Zhou, H., Zhou, G., He, Q., Zhou, L., Ji, Y., & Zhou, M. (2020). Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 171, 103932. crossref
DOI: http://doi.org/10.17503/agrivita.v0i0.2308
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.