Growth and Betacyanin Content of Beetroots (Beta vulgaris L.) Under Water Deficit in A Tropical Condition

S.M. Sitompul, Mochammad Roviq, Ervina Riedo

Abstract


The present study, a part of a series of studies carried out to explore the possibility of beetroot cultivation in the tropics on highlands, was designed to investigate the growth and betacyanin content of beetroot plants in response to water deficit in a tropical condition. The water deficit was executed through varied watering intervals consisting of once three (as control), four, five, six and seven days. A randomized block design with five replicates was used to impose the treatments. The effect of water deficit was found to reduce the leaf water content, the biomass production (total dry weight) and the root yields of beetroot plants. Root dry weight decreased by more than 20% and 50% with the watering interval once four and seven days respectively compared with that once three days. The betacyanin content of roots was not influenced by the water deficit when expressed per unit volume of fresh root extracts (340.5 ± 60.1 mg/l), and increased when expressed per unit root dry weight. It is suggested that an optimal supply of water, for instance watering once three days, is necessary to obtain beetroot plants growing optimally and producing a high root yield and betacyanin content of roots.

Keywords


Beetroots; Betacyanin; Growth; Water deficit

Full Text:

PDF

References


Cai, Y., Sun, M., & Corke, H. (2003). Antioxidant activity of betalains from plants of the Amaranthaceae. Journal of Agricultural and Food Chemistry, 51(8), 2288–2294. https://doi.org/10.1021/jf030045u

Casique-Arroyo, G., Martínez-Gallardo, N., de la Vara, L. G., & Délano-Frier, J. P. (2014). Betacyanin biosynthetic genes and enzymes are differentially induced by (a)biotic stress in Amaranthus hypochondriacus. PLoS ONE, 9(6), e99012. https://doi.org/10.1371/journal.pone.0099012

Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology, 70(1), 1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

Chung, H. H., Schwinn, K. E., Ngo, H. M., Lewis, D. H., Massey, B., Calcott, K. E., … Harrison, D. K. (2015). Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Frontiers in Plant Science, 6, 499. https://doi.org/10.3389/fpls.2015.00499

Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822. https://doi.org/10.3390/nu7042801

da Silva Curvêlo, C. R., Diniz, L. H. B., de Azevedo Pereira, A. I., & Ferreira, L. L. (2018). Influence of fertilizer type on beet production and post-harvest quality characteristic. Agricultural Sciences, 09(05), 557–565. https://doi.org/10.4236/as.2018.95038

de Oliveira, R. A., Ramos, M. M., & de Aquino, L. A. (2015). Irrigation management. In F. Santos, A. Borém, & C. Caldas (Eds.), Sugarcane: Agricultural Production, Bioenergy and Ethanol (pp. 161–183). Academic Press. https://doi.org/10.1016/B978-0-12-802239-9.00008-6

dos Santos, M. G., Souza, Ê. G. F., da Silva, A. F. A., Barboza, M., Soares, E. B., Lins, H. A., … da Silveira, L. M. (2017). Beetroot production using Calotropis procera as green manure in the Brazilian Northeast semiarid. Australian Journal of Crop Science, 11(10), 1268–1276. Retrieved from https://search.informit.com.au/document-Summary;dn=404719526734825;res=IELHSS;-type=pdf

France, J., & Thornley, J. H. M. (1984). Mathematical models in agriculture: A quantitative approach to problems in agriculture and related sciences. London: Butterworth. Retrieved from https://books.google.co.id/books/about/Mathematical_models_in_agriculture.html?id=HsrwAAAAMAAJ&redir_esc=y

Gago, J., de Menezes Daloso, D., Figueroa, C. M., Flexas, J., Fernie, A. R., & Nikoloski, Z. (2016). Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. Plant Physiology, 171(1), 265–279. https://doi.org/10.1104/pp.15.01660

Guldiken, B., Toydemir, G., Nur Memis, K., Okur, S., Boyacioglu, D., & Capanoglu, E. (2016). Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. International Journal of Molecular Sciences, 17(6), 858. https://doi.org/10.3390/ijms17060858

Halliwell, B. (1997). Antioxidants and human disease: A general introduction. Nutrition Reviews, 55(1), S44–S49. https://doi.org/10.1111/j.1753-4887.1997.tb06100.x

Lakshmi Sahitya, U., Krishna, M. S. R., Sri Deepthi, R., Shiva Prasad, G., & Peda Kasim, D. (2018). Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L) seedlings. BioMed Research International, 2018, 1605096. https://doi.org/10.1155/2018/1605096

Maréchaux, I., Bartlett, M. K., Gaucher, P., Sack, L., & Chave, J. (2016). Causes of variation in leaf-level drought tolerance within an Amazonian forest. Journal of Plant Hydraulics, 3, e004. https://doi.org/10.20870/jph.2016.e004

Miguel, M. G. (2018). Betalains in some species of the Amaranthaceae family: A review. Antioxidants, 7(4), 53. https://doi.org/10.3390/antiox7040053

Nakatsuka, T., Yamada, E., Takahashi, H., Imamura, T., Suzuki, M., Ozeki, Y., … Nishihara, M. (2013). Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports, 3, 1970. https://doi.org/10.1038/srep01970

Nottingham, S. (2004). Beetroot. Retrieved from https:// www.academia.edu/21542519/Beetroot

Pavokovic, D., & Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145–155. Retrieved from https://hrcak.srce.hr/file/103483

Polturak, G., Breitel, D., Grossman, N., Sarrion-Perdigones, A., Weithorn, E., Pliner, M., … Aharoni, A. (2016). Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist, 210(1), 269–283. https://doi.org/10.1111/nph.13796

Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613

Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., … Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675. https://doi.org/10.1016/j.foodres.2011.07.002

Sitompul, S. M., & Zulfati, A. P. (2019). Betacyanin and growth of beetroot (Beta vulgaris L.) in response to nitrogen fertilization in a tropical condition. AGRIVITA Journal of Agricultural Science, 41(1), 40–47. https://doi.org/10.17503/agrivita.v41i1.2050

Sitompul, S. M., Sitawati, & Sugito, Y. (2013). Spatial productivity analysis of tropical apple (Malus sylvestris Mill) in relation to temperature with PCRaster. Journal of Agricultural Science and Technology A, 3, 183–192. Retrieved from http://www.davidpublisher.org/index.php/Home/Article/index?id=14564.html

Slatyer, R. O. (1969). Physiological significance of internal water relations to crop yield. In J. D. Eastin, F. A. Haskins, C. Y. Sullivan, C. H. M. van Bavel, & R. C. Dinauer (Eds.), Physiological aspects of crop yield: Proceedings of A Symposium (p. 186). Madison, Wisconsin: American Society of Agronomy & Crop Science Society of America. https://doi.org/10.2135/1969.physiologicalaspects.c6

Soltys-Kalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., & Marczewski, W. (2016). The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science, 66, 328–331. https://doi.org/10.1270/jsbbs.66.328

Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 14, 111. https://doi.org/10.1186/1471-2229-14-111

Stagnari, F., Galieni, A., Speca, S., & Pisante, M. (2014). Water stress effects on growth, yield and quality traits of red beet. Scientia Horticulturae, 165, 13–22. https://doi.org/10.1016/j.scienta.2013.10.026

Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216(4), 303–311. https://doi.org/10.1007/s00217-002-0657-0

Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., … Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55. https://doi.org/10.1016/j.jfca.2015.03.005

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762

Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., & Spiertz, H. J. (2003). A flexible sigmoid function of determinate growth. Annals of Botany, 91(3), 361–371. https://doi.org/10.1093/aob/mcg029

Yin, X., Kropff, M. J., McLaren, G., & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1–2), 1–16. https://doi.org/10.1016/0168-1923(95)02236-Q




DOI: http://doi.org/10.17503/agrivita.v41i3.2264

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.