Mechanism of Salt Stress Tolerance in Plants: Role of Cation/H+ Antiporters
Abstract
Salinity is an important adverse environmental problem that caused a loss in the sense of reducing yield per plant, morphological, and physiological functions of crop plants. The plants compete with environmental stress conditions to withstand following normal growth and development. The exchange of cations or protons (H+) takes place across the cell membrane to maintain the osmotic pressure of cells under salt stress conditions. There is a huge number of cation/H+ antiporter 1 protein-producing gene by plant cells under salt stress conditions has been identified. However, a few have been characterized and sequenced which contributes to ion homeostasis and osmotic adjustment of cells. These cation/H+ antiporters are produced and stored in the vacuoles, endosomal forms and in the cytoplasm. The cation/H+ antiporters are involved in the homeostasis of K+, Na+, and pH of the cell under salinity stress conditions. The cation/H+ antiporters help plants cells to regulate all physiological functions under salt stress conditions.
Keywords
Full Text:
PDFReferences
Abdel Latef, A. A. H., & Ahmad, P. (2015). Legumes and breeding under abiotic stress: An overview. In M. M. Azooz & P. Ahmad (Eds.), Legumes under Environmental Stress: Yield, Improvement and Adaptations (pp. 1–20). West Sussex, UK: John Wiley & Sons, Inc. crossref
Abdel Latef, A. A. H., Mostofa, M. G., Rahman, M. M., Abdel-Farid, I. B., & Tran, L. S. P. (2019). Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. Journal of Plant Growth Regulation, 38, 966–979. crossref
Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369–374. crossref
Adams, E., & Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 56(3), 231–249. crossref
Aharon, G. S., Apse, M. P., Duan, S., Hua, X., & Blumwald, E. (2003). Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant and Soil, 253(1), 245–256. crossref
Ahmadi, H., Corso, M., Weber, M., Verbruggen, N., & Clemens, S. (2018). CAX1 suppresses Cdinduced generation of reactive oxygen species in Arabidopsis halleri. Plant Cell and Environment, 41(10), 2435–2448. crossref
Ali, M., Rafique, F., Ali, Q., & Malik, A. (2020). Genetic modification for salt and drought tolerance in plants through SODERF3. Biological and Clinical Sciences Research Journal, 2020, e022. Retrieved from pdf
Almeida, D. M., Margarida Oliveira, M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(suppl. 1), 326–345. crossref
Amagaya, K., Shibuya, T., Nishiyama, M., Kato, K., & Kanayama, Y. (2020). Characterization and expression analysis of the Ca2+/cation antiporter gene family in tomatoes. Plants, 9(1), 25. crossref
An, R., Chen, Q. J., Chai, M. F., Lu, P. L., Su, Z., Qin, Z. X., … Wang, X. C. (2007). AtNHX8, a member of the monovalent cation: Proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant Journal, 49(4), 718–728. crossref
Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS Letters, 581(12), 2247–2254. crossref
Arnao, M. B., & Hernández-Ruiz, J. (2019). Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Research, 2(3), 152–168. crossref
Ashraf, M., Athar, H. R., Harris, P. J. C., & Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110. crossref
Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 8, 509. crossref
Bafeel, S. O. (2014). Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin. Saudi Journal of Biological Sciences, 21(4), 300–304. crossref
Baghour, M., Gálvez, F. J., Sánchez, M. E., Aranda, M. N., Venema, K., & Rodríguez-Rosales, M. P. (2019). Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiology and Biochemistry, 135, 77–86. crossref
Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. crossref
Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current Opinion in Plant Biology, 22, 1–6. crossref
Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell, 23(9), 3482–3497. crossref
Bölter, B., Mitterreiter, M. J., Schwenkert, S., Finkemeier, I., & Kunz, H.-H. (2020). The topology of plastid inner envelope potassium cation efflux antiporter KEA1 provides new insights into its regulatory features. Photosynthesis Research, 145, 43–54. crossref
Bowers, K., Levi, B. P., Patel, F. I., & Stevens, T. H. (2000). The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 11(12), 4277–4294. crossref
Brett, C. L., Donowitz, M., & Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology-Cell Physiology, 288(2), C223–C239. crossref
Cai, X., Zhang, C., Shu, W., Ye, Z., Li, H., & Zhang, Y. (2016). The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications, 474(4), 736–741. crossref
Cao, B., Long, D., Zhang, M., Liu, C., Xiang, Z., & Zhao, A. (2016). Molecular characterization and expression analysis of the mulberry Na+/H+ exchanger gene family. Plant Physiology and Biochemistry, 99, 49–58. crossref
Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology, 11, 50–61. crossref
Chanroj, S., Wang, G., Venema, K., Zhang, M. W., Delwiche, C. F., & Sze, H. (2012). Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Frontiers in Plant Science, 3, 25. crossref
Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D. E., & Bohnert, H. J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant Journal, 24(4), 511–522. crossref
Chien, P. S., Nam, H. G., & Chen, Y. R. (2015). A saltregulated peptide derived from the CAP superfamily protein negatively regulates saltstress tolerance in Arabidopsis. Journal of Experimental Botany, 66(17), 5301–5313. crossref
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. crossref
Dhar, R., Sägesser, R., Weikert, C., Yuan, J., & Wagner, A. (2011). Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. Journal of Evolutionary Biology, 24(5), 1135–1153. crossref
Djanaguiraman, M., & Vara Prasad, P. V. (2013). Effects of salinity on ion transport, water relations and oxidative damage. In P. Ahmad, M. Azooz, & M. Prasad (Eds.), Ecophysiology and Responses of Plants under Salt Stress (pp. 89–114). New York: Springer. crossref
Feki, K., Quintero, F. J., Khoudi, H., Leidi, E. O., Masmoudi, K., Pardo, J. M., & Brini, F. (2014). A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Reports, 33(2), 277–288. crossref
Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., & Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology, 45(2), 146–159. crossref
Gao, X., Ren, Z., Zhao, Y., & Zhang, H. (2003). Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiology, 133(4), 1873–1881. crossref
Gharsallah, C., Fakhfakh, H., Grubb, D., & Gorsane, F. (2016). Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB PLANTS, 8, plw055. crossref
Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., … Mimura, T. (2009). Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2023–2033. crossref
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7, 1787. crossref
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. crossref
Haseeb, A., Nawaz, A., Rao, M. Q. A., Ali, Q., & Malik, A. (2020). Genetic variability and association among seedling traits of Zea mays under drought stress conditions. Biological and Clinical Sciences Research Journal, 2020, e020. Retrieved from pdf
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499. crossref
He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., … Zhang, H. (2005). Expression of an arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology, 46(11), 1848–1854. crossref
Hedrich, R. (2012). Ion channels in plants. Physiological Reviews, 92(4), 1777–1811. crossref
Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5, 11. crossref
Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., … Harmon, A. C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 132(2), 666–680. crossref
Huertas, R., Rubio, L., Cagnac, O., García-Sánchez, M. J., Alché, J. D. D., Venema, K., … RodríguezRosales, M. P. (2013). The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant, Cell & Environment, 36(12), 2135–2149. crossref
Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Malik, A. (2020). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020, e016. Retrieved from pdf
Ismail, A. M., & Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405–434. crossref
Ismail, A., Riemann, M., & Nick, P. (2012). The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 63(5), 2127–2139. crossref
Janz, D., Behnke, K., Schnitzler, J. P., Kanawati, B., Schmitt-Kopplin, P., & Polle, A. (2010). Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 10, 150. crossref
Jia, Q., Zheng, C., Sun, S., Amjad, H., Liang, K., & Lin, W. (2018). The role of plant cation/proton antiporter gene family in salt tolerance. Biologia Plantarum, 62(4), 617–629. crossref
Jiang, J.-L., Tian, Y., Li, L., Yu, M., Hou, R.-P., & Ren, X.-M. (2019). H(2)S alleviates salinity stress in cucumber by maintaining the Na(+)/K(+) balance and regulating H(2)S metabolism and oxidative stress response. Frontiers in Plant Science, 10, 678. crossref
Jiang, W., Sun, L., Yang, X., Wang, M., Esmaeili, N., Pehlivan, N., … Zhao, Y. (2017). The effects of transcription directions of transgenes and the gypsy insulators on the transcript levels of transgenes in transgenic Arabidopsis. Scientific Reports, 7, 14757. crossref
Jiang, X., Leidi, E. O., & Pardo, J. M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signaling and Behavior, 5(7), 792–795. crossref
Joshi, M., Jha, A., Mishra, A., & Jha, B. (2013). Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE, 8(8), e71136. crossref
Krebs, M., Beyhl, D., Görlich, E., Al-Rasheid, K. A. S., Marten, I., Stierhof, Y. D., … Schumacher, K. (2010). Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3251–3256. crossref
Krulwich, T. A., Sachs, G., & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 9(5), 330–343. crossref
Kumar, K., Kumar, M., Kim, S. R., Ryu, H., & Cho, Y. G. (2013). Insights into genomics of salt stress response in rice. Rice, 6, 27. crossref
Leidi, E. O., Barragán, V., Rubio, L., El-Hamdaoui, A., Ruiz, M. T., Cubero, B., … Pardo, J. M. (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 61(3), 495–506. crossref
Li, M., Li, Y., Li, H., & Wu, G. (2011). Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiology, 31(3), 349–357. crossref
Li, N., Wang, X., Ma, B., Du, C., Zheng, L., & Wang, Y. (2017). Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. Journal of Plant Physiology, 218, 109–120. crossref
Ma, D. M., Xu, W. R., Li, H. W., Jin, F. X., Guo, L. N., Wang, J., … Xu, X. (2014). Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma, 251(1), 219–231. crossref
Ma, S., & Bohnert, H. J. (2007). Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biology, 8, R49. crossref
Ma, Y.-C., Augé, R. M., Dong, C., & Cheng, Z.-M. (Max). (2017). Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: A meta-analysis. Plant Biotechnology Journal, 15(2), 162–173. crossref
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158. crossref
Manohar, M., Shigaki, T., & Hirschi, K. D. (2011). Plant cation/H+ exchangers (CAXs): Biological functions and genetic manipulations. Plant Biology, 13(4), 561–569. crossref
Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J. K., Pardo, J. M., & Quintero, F. J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143(2), 1001–1012. crossref
Martinière, A., Bassil, E., Jublanc, E., Alcon, C., Reguera, M., Sentenac, H., … Paris, N. (2013). In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell, 25(10), 4028–4043. crossref
Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., … Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667. crossref
Mazel, A., Leshem, Y., Tiwari, B. S., & Levine, A. (2004). Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiology, 134(1), 118–128. crossref
McCubbin, T., Bassil, E., Zhang, S., & Blumwald, E. (2014). Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis, microtubule organization and directional root growth. Plants (Basel, Switzerland), 3(3), 409–426. crossref
Mei, H., Cheng, N. H., Zhao, J., Park, S., Escareno, R. A., Pittman, J. K., & Hirschi, K. D. (2009). Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytologist, 183(1), 95–105. crossref
Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16, 237–251. crossref
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453–467. crossref
Modareszadeh, M., Bahmani, R., Kim, D., & Hwang, S., (2020). CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. Plant Molecular Biology, 2020, 1-18. crossref
Morgan, A. J., Platt, F. M., Lloyd-Evans, E., & Galione, A. (2011). Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 439(3), 349–374. crossref
Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - what is the cost? New Phytologist, 208(3), 668–673. crossref
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. crossref
Muqadas, S., Ali, Q., & Malik, A. (2020). Genetic association among seedling traits of Zea mays under multiple stresses of salts, heavy metals and drought. Biological and Clinical Sciences Research Journal, 2020, e026. Retrieved from pdf
Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020, e025. Retrieved from pdf
Noreen, S., Siddiq, A., Hussain, K., Ahmad, S., & Hasanuzzaman, M. (2017). Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop. Acta Scientiarum Polonorum, Hortorum Cultus, 16(2), 57–74. Retrieved from website
Ohnishi, M., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y., & Iida, S. (2005). Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant and Cell Physiology, 46(2), 259–267. crossref
Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., & Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 532(3), 279–282. crossref
Olías, R., Eljakaoui, Z., Li, J., De Morales, P. A., MarínManzano, M. C., Pardo, J. M., & Belver, A. (2009). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment, 32(7), 904–916. crossref
Orij, R., Brul, S., & Smits, G. J. (2011). Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta - General Subjects, 1810(10), 933–944. crossref
Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M., & Sze, H. (2007). Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiology, 144(1), 82–93. crossref
Pardo, J. M., & Rubio, F. (2011). Na+ and K+ transporters in plant signaling. In M. Geisler & K. Venema (Eds.), Transporters and Pumps in Plant Signaling (pp. 65–98). Berlin, Heidelberg: Springer. crossref
Pardo, J. M., Cubero, B., Leidi, E. O., & Quintero, F. J. (2006). Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany, 57(5), 1181–1199. crossref
Park, H. J., Kim, W. Y., & Yun, D. J. (2016). A new insight of salt stress signaling in plant. Molecules and Cells, 39(6), 447–459. crossref
Paroutis, P., Touret, N., & Grinstein, S. (2004). The pH of the secretory pathway: Measurement, determinants, and regulation. Physiology, 19(4), 207–215. crossref
Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., … Zhang, H. (2016). Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant & Cell Physiology, 57(5), 1069–1084. crossref
Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces longterm metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Frontiers in Plant Science, 6, 466. crossref
Pitman, M. G., & Läuchli, A. (2006). Global impact of salinity and agricultural ecosystems. In A. Läuchli & U. Lüttge (Eds.), Salinity: Environment - Plants - Molecules (pp. 3–20). Dordrecht: Springer. crossref
Pittman, J. K. (2012). Multiple transport pathways for mediating intracellular pH homeostasis: The contribution of H(+)/ion exchangers. Frontiers in Plant Science, 3, 11. crossref
Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8436–8441. crossref
Qiu, Q.-S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J.-K. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry, 279(1), 207–215. crossref
Quintero, F. J., Blatt, M. R., & Pardo, J. M. (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Letters, 471(2–3), 224–228. crossref
Quintero, F. J., Ohta, M., Shi, H., Zhu, J. K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 9061–9066. crossref
Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2007). Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 19(2), 137–151. crossref
Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. crossref
Reguera, M., Bassil, E., & Blumwald, E. (2014). Intracellular NHX-type cation/H+ antiporters in plants. Molecular Plant, 7(2), 261–263. crossref
Rodríguez-Rosales, M. P., Gálvez, F. J., Huertas, R., Aranda, M. N., Baghour, M., Cagnac, O., & Venema, K. (2009). Plant NHX cation/proton antiporters. Plant Signaling & Behavior, 4(4), 265–276. crossref
Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. crossref
Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B. H., Matsumoto, T. K., … Hasegawa, P. M. (2001). AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14150–14155. crossref
Sajid, M., Rashid, B., Ali, Q., & Husnain, T. (2018). Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Biologia Plantarum, 62, 409–420. crossref
Senadheera, P., Singh, R. K., & Maathuis, F. J. M. (2009). Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. Journal of Experimental Botany, 60(9), 2553–2563. crossref
Serrano, R., & Rodriguez-Navarro, A. (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13(4), 399–404. crossref
Shabala, S., & Munns, R. (2012). Salinity stress: Physiological constraints and adaptive mechanisms. In Plant Stress Physiology (pp. 59–93). CAB International. crossref
Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., & Jiang, L. (2013). Organelle pH in the Arabidopsis endomembrane system. Molecular Plant, 6(5), 1419–1437. crossref
Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700. crossref
Shin, R. (2014). Strategies for improving potassium use efficiency in plants. Molecules and Cells, 37(8), 575–584. crossref
Steiner, J., & Sazanov, L., (2020). Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. Elife, 9, e59407. crossref
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. crossref
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503–527. crossref
Tian, S., Guo, R., Zou, X., Zhang, X., Yu, X., Zhan, Y., … Si, T. (2019). Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Frontiers in Plant Science, 10, 785. crossref
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24(2), 179–189. crossref
Venema, K., Belver, A., Marín-Manzano, M. C., RodríguezRosales, M. P., & Donaire, J. P. (2003). A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. Journal of Biological Chemistry, 278(25), 22453–22459. crossref
Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132. crossref
Wang, B., Zhai, H., He, S., Zhang, H., Ren, Z., Zhang, D., & Liu, Q. (2016). A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 201, 153–166. crossref
Wang, L., Wu, X., Liu, Y., & Qiu, Q. S. (2015). AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis: Three conserved acidic residues are essential for K+ transport. PLoS ONE, 10(12), e0144716. crossref
Wu, X. X., Li, J., Wu, X. D., Liu, Q., Wang, Z. K., Liu, S. S., … Su, A. Y. (2016). Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Genetics and Molecular Research, 15(2), 1–12. crossref
Wu, X., Ebine, K., Ueda, T., & Qiu, Q. S. (2016). AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis. PLoS ONE, 11(3), e0151658. crossref
Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14(suppl. 1), S165–S183. crossref
Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K., & Jha, B. (2012). The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 12, 188. crossref
Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10(12), 615–620. crossref
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 217(2), 523–539. crossref
Ye, L., Zhao, X., Bao, E., Cao, K., & Zou, Z. (2019). Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem ii activities and stress-response gene expressions under salinity-alkalinity stresses. Frontiers in Plant Science, 10, 863. crossref
Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal, 30(5), 529–539. crossref
Yoshida, K., Kawachi, M., Mori, M., Maeshima, M., Kondo, M., Nishimura, M., & Kondo, T. (2005). The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. heavenly blue. Plant and Cell Physiology, 46(3), 407–415. crossref
Yousef, F., Shafique, F., Ali, Q., & Malik, A. (2020). Effects of salt stress on the growth traits of chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) seedlings. Biological and Clinical Sciences Research Journal, 2020, e029. Retrieved from pdf
Yue, Y., Zhang, M., Zhang, J., Duan, L., & Li, Z. (2012). SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology, 169(3), 255–261. crossref
Zhang, Z., Yao, X., & Zhu, H. (2010). Potential application of geopolymers as protection coatings for marine concrete II. microstructure and anticorrosion mechanism. Applied Clay Science, 49(1–2), 7–12. crossref
Zhao, J., Barkla, B. J., Marshall, J., Pittman, J. K., & Hirschi, K. D. (2008). The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+- ATPase activity. Planta, 227(3), 659–669. crossref
Zheng, S., Pan, T., Fan, L., & Qiu, Q.-S. (2013). A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. PLOS ONE, 8(11), e81463. crossref
Zhou, Y., Yin, X., Wan, S., Hu, Y., Xie, Q., Li, R., … Jiang, X. (2018). The Sesuvium portulacastrum plasma membrane Na+/H+ antiporter SpSOS1 complemented the salt sensitivity of transgenic Arabidopsis sos1 mutant plants. Plant Molecular Biology Reporter, 36(4), 553–563. crossref
Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445. crossref
DOI: http://doi.org/10.17503/agrivita.v42i3.2242
Copyright (c) 2020 The Author(s)
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.