Growth Characteristics and Fruit Quality of Chili Pepper under Higher Electrical Conductivity of Nutrient Solution Induced by Various Salts
Abstract
Keywords
Full Text:
PDFReferences
Ahmadi, M., & Souri, M. K. (2018). Growth and mineral content of coriander (Coriandrum sativum L.) plants under mild salinity with different salts. Acta Physiologiae Plantarum, 40, 194. DOI
Aini, N., Syekhfani, Yamika, W. S. D., Dyah P., R., & Setiawan, A. (2014). Growth and physiological characteristics of soybean genotypes (Glycine max L.) toward salinity stress. AGRIVITA Journal of Agricultural Science, 36(3), 201–209. DOI
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201(5), 368–378. DOI
Aktas, H., Abak, K., & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260–266. DOI
Aslani, M., & Souri, M. K. (2018). Growth and quality of green bean (Phaseolus vulgaris L.) under foliar application of organic-chelate fertilizers. Open Agriculture, 3(1), 146–154. DOI
Bose, J., Shabala, L., Pottosin, I., Zeng, F., Velarde- Buendía, A. M., Massart, A., … Shabala, S. (2014). Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+- permeable channels to reactive oxygen species: Physiological traits that differentiate salinity tolerance between pea and barley. Plant, Cell and Environment, 37(3), 589–600. DOI
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90, 856–867. DOI
Cocozza, C., Pulvento, C., Lavini, A., Riccardi, M., D’Andria, R., & Tognetti, R. (2013). Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa Willd.) grown in a mediterranean-type agroecosystem. Journal of Agronomy and Crop Science, 199(4), 229–240. DOI
Ebrahimi, R., Souri, M. K., Ebrahimi, F., & Ahmadizadeh, M. (2012). Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Applied Sciences Journal, 16(10), 1380–1386. Retrieved from PDF
Foti, C., Khah, E. M., & Pavli, O. I. (2019). Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21, 480–486. DOI
Galli, V., da Silva Messias, R., Perin, E. C., Borowski, J. M., Bamberg, A. L., & Rombaldi, C. V. (2016). Mild salt stress improves strawberry fruit quality. LWT - Food Science and Technology, 73, 693–699. DOI
Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management, 97(1), 148–156. DOI
Hellal, F. A., Abdelhamid, M. T., Abo-Basha, D. M., & Zewainy, R. M. (2012). Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). Journal of Applied Sciences Research, 8(8), 4428–4433. Retrieved from PDF
Karjunita, N., Khumaida, N., & Ardie, S. W. (2019). Different root anatomical changes in salt-tolerant and salt-sensitive foxtail millet genotypes. AGRIVITA Journal of Agricultural Science, 41(1), 88–96. DOI
Kosová, K., Vítámvás, P., Urban, M. O., & Prášil, I. T. (2013). Plant proteome responses to salinity stress-comparison of glycophytes and halophytes. Functional Plant Biology, 40, 775–786. Retrieved from website
Malash, N. M., Flowers, T. J., & Ragab, R. (2008). Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrigation Science, 26, 313–323. DOI
Mardanluo, S., Souri, M. K., & Ahmadi, M. (2018). Plant growth and fruit quality of two pepper cultivars under different potassium levels of nutrient solutions. Journal of Plant Nutrition, 41(12), 1604–1614. DOI
Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press. Retrieved from https://books.google.co.id/books?hl=en&lr=&id=yqKV3USG41cC&oi=fnd&pg=PP1&dq=Marschner%27s+Mineral+Nutrition+of+Higher+Plants:+Third+Edition&ots=VbaES3B-Am&sig=mlBoyMv_-W X I m j c f s W E X f Q R H T m o & r e d i r _ esc=y#v=onepage&q=Marschner’s Mineral Nutrition of Higher Plants%3A Third Edition&f=false DOI
Martínez-Ballesta, M. C., Martínez, V., & Carvajal, M. (2004). Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environmental and Experimental Botany, 52(2), 161–174. DOI
Methenni, K., Abdallah, M. Ben, Nouairi, I., Smaoui, A., Ammar, W. B., Zarrouk, M., & Youssef, N. B. (2018). Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Scientia Horticulturae, 233, 349–358. DOI
Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - what is the cost? New Phytologist, 208(3), 668–673. DOI
Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. DOI
Neocleous, D., Koukounaras, A., Siomos, A. S., & Vasilakakis, M. (2014). Changes in photosynthesis, yield, and quality of baby lettuce under salinity stress. Journal of Agricultural Science and Technology, 16(6), 1335–1343. Retrieved from website
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22, 4056–4075. DOI
Pires, I. S., Negrão, S., Oliveira, M. M., & Purugganan, M. D. (2015). Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum, 155(1), 43–54. DOI
Roy, P. R., Tahjib-Ul-Arif, M., Polash, M. A. S., Hossen, M. Z., & Hossain, M. A. (2019). Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 25, 611–624. DOI
Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257–279. DOI
Shabala, S., Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., … Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. Plant Journal, 61(5), 839–853. DOI
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14(4), 7370–7390. DOI
Wu, H., Shabala, L., Barry, K., Zhou, M., & Shabala, S. (2013). Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiologia Plantarum, 149(4), 515–527. DOI
Zhu, M., Zhou, M., Shabala, L., & Shabala, S. (2017). Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant Cell and Environment, 40(7), 1009–1020. DOI
Zörb, C., Geilfus, C.-M., & Dietz, K.-J. (2019). Salinity and crop yield. Plant Biology, 21(S1), 31–38. DOI
DOI: http://doi.org/10.17503/agrivita.v42i1.2225
Copyright (c) 2020 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.