Field Application of Trichoderma Suspension to Control Cacao Pod Rot (Phytophthora palmivora)

Rina Sriwati, Tjut Chamzurn, Loekas Soesanto, Munazhirah Munazhirah

Abstract


Cacao pod rot caused by Phytophthora palmivora, is an important disease and contributes significant disease losses to global cocoa production. This research objective was to determine the effect of Trichoderma harzianum and T. virens suspensions to cacao pod rot disease on the field. This research was carried out in Pulo Hagu village, Pidie Regency, Aceh, Indonesia from March to July 2017. The single pattern randomized block design was adopted to evaluate three treatments, i.e. without suspension (control), suspensions of T. Harzianum, and T. virens for eight replications. Each replication consisted of three of experimental units. The result showed that both of Trichoderma species contained only Alkaloid metabolite based on Phytochemical test. On the field, the application of T. harzianum suspension reduced the percentage of fruit infection and disease intensity for 48.57 %, 46.04 % at 12 weeks after application (WAA) respectively. Based on the percentage reduction in the area of the spot between the metabolites T. harzianum suspension and control and T. virens and control are 47.24 % and 27.46 % at 87 WAA respectively. In addition, T. virens suppressed the percentage of infected fruit and the intensity of infected fruit for 40.61 % and 38.02 % at 12 WAA.

Keywords


Cacao pod rot; Secondary Metabolite; Trichoderma harzianum; Trichoderma virens

Full Text:

PDF

References


Ahmed, E., Arshad, M., Zakriyya Khan, M., Shoaib Amjad, M., Mehreen Sadaf, H., Riaz, I., … Sabaoon. (2017). Secondary metabolites and their multidimensional prospective in plant life. Journal of Pharmacognosy and Phytochemistry, 6(2), 205–214. Retrieved from http://www.phytojournal.com/archives/?year=2017&vol=6&issue=2&ArticleId=1152&si=false

Aneja, M., Gianfagna, T. J., & Hebbar, P. K. (2005). Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology, 67, 304–307. http://doi.org/10.1016/j.pmpp.2006.05.002

Asrul. (2009). Uji daya hambat jamur antagonis Trichoderma spp dalam formulasi kering berbentuk tablet terhadap luas bercak Phytophthora palmivora pada buah kakao. Agrisains, 10(1), 21–27. Retrieved from http://jurnal.untad.ac.id/jurnal/index.php/AGRISAINS/article/view/2151

Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. http://doi.org/1139-6709

Cardoza, R.-E., Hermosa, M.-R., Vizcaino, J.-A., Sanz, L., Monte, E., & Gutiérrez, S. (2005). Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. Microorganisms for Industrial Enzymes and Biocontrol, 37(2), 1–22. Retrieved from https://www.researchgate.net/publication/284802240_Secondary_metabolites_produced_by_Trichoderma_and_their_importance_in_the_biocontrol_process

Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97(12), 1650–1653. http://doi.org/10.1094/PHYTO-97-12-1650

Hamrounı, R., Molınet, J., Dupuy, N., Masmoudı, A., & Roussos, S. (2017). Trichoderma spores and 6-pentyl-alpha-pyrone production in solid state culture for biological control. In 15th International Conference on Environmental Science and Technology (p. 4). Rhodes, Greece: CEST. Retrieved from https://cest2017.gnest.org/sites/default/files/presentation_file_list/cest2017_01127_poster_paper.pdf

Hanada, R. E., Pomella, A. W. V., Soberanis, W., Loguercio, L. L., & Pereira, J. O. (2009). Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biological Control, 50(2), 143–149. http://doi.org/10.1016/j.biocontrol.2009.04.005

Howell, C. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. http://doi.org/10.1094/PDIS.2003.87.1.4

Howell, C. R., & Puckhaber, L. S. (2005). A study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biological Control, 33(2), 217–222. http://doi.org/10.1016/j.biocontrol.2005.02.003

Kullnig, C., Mach, R. L., Lorito, M., & Kubicek, C. P. (2000). Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Applied and Environmental Microbiology, 66(5), 2232–2234. http://doi.org/10.1128/AEM.66.5.2232-2234.2000

Kumaresan, S., Karthi, V., Senthilkumar, V., Balakumar, B. S., & Stephen, A. (2015). Biochemical constituents and antioxidant potential of endophytic fungi isolated from the leaves of Azadirachta indica A. Juss (Neem) from Chennai, India. Journal of Academia and Industrial Research, 3(8), 355-361. Retrieved from https://www.academia.edu/10139209/Biochemical_constituents_and_antioxidant_potential_of_endophytic_fungi_isolated_from_the_leaves_of_Azadirachta_indica_A._Juss_Neem_from_Chennai_India

Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166. Retrieved from http://140.112.183.156/pdf/07-4/7-4-1.pdf

Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2 Special Isuue), 232–249. Retrieved from https://www.omicsonline.org/open-access/role-of-secondary-metabolites-in-defense-mechanisms-of-plants-0974-8369-3-128.pdf

Mbarga, J. B., Martijn Ten Hoopen, G., Begoude, A. D., Tondje, P. R., Kuate, J., Ambang, Z., … Schiffers, B. (2012). Efficacy of Trichoderma asperellum oil formulations on the control of cocoa black pod disease (Phytophthora megakarya). Communications in Agricultural and Applied Biological Sciences, 77(3), 65–74. Retrieved from https://orbi.uliege.be/handle/2268/173551

Muzuni, Indradewi, R., & Baharudin. (2015). Ketahanan tanaman kakao terhadap serangan Phytophthora palmivora dan Oncobasidium theobromae di Kabupaten Konawe Sulawesi Tenggara. Paradigma, 19(1), 67–82. Retrieved from https://anzdoc.com/ketahanan-tanaman-kakao-terhadap-serangan-phytophthora-palmi.html

Nevalainen, H., Kautto, L., & Te’o, J. (2014). Methods for isolation and cultivation of filamentous fungi. In I. Paulsen & A. Holmes (Eds.), Environmental microbiology: Methods in molecular biology (Methods and protocols) (Vol. 1096) (pp. 3-16). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-712-9_1

Panwar, V., Aggarwal, A., Singh, G., Verma, A., Sharma, I., Saharan, M., & A Singh, A. (2014). Efficacy of foliar spray of Trichoderma isolates against Fusarium graminearum causing head blight of wheat. Journal of Wheat Research, 6(1), 59–63. Retrieved from https://www.researchgate.net/publication/270574224_Efficacy_of_foliar_spray_of_Trichoderma_isolates_against_Fusarium_graminearum_causing_head_blight_of_wheat

Sawant, I. S. (2014). Trichoderma-Foliar pathogen interactions. The Open Mycology Journal, 8, 58–70. Retrieved from https://benthamopen.com/contents/pdf/TOMYCJ/TOMYCJ-8-58.pdf

Seng, J., Herrera, G., Vaughan, C. S., & McCoy, M. B. (2014). Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica. Revista De Biologia Tropical, 62(3), 899–907. Retrieved from https://www.redalyc.org/articulo.oa?id=44932441006

Song, X.-Y., Shen, Q.-T., Xie, S.-T., Chen, X.-L., Sun, C.-Y., & Zhang, Y.-Z. (2006). Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260(1), 119–125. http://doi.org/10.1111/j.1574-6968.2006.00316.x

Sriwati, R., Melnick, R. L., Muarif, R., Strem, M. D., Samuels, G. J., & Bailey, B. A. (2015). Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biological Control, 89, 33–41. http://doi.org/10.1016/j.biocontrol.2015.04.018

Vanegtern, B., Rogers, M., & Nelson, S. (2015). Black pod rot of cacao caused by Phytophthora palmivora. Plant Disease. Manoa. Retrieved from https://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-108.pdf

Vargas, W. A., Mukherjee, P. K., Laughlin, D., Wiest, A., Moran-Diez, M. E., & Kenerley, C. M. (2014). Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (United Kingdom), 160, 2319–2330. http://doi.org/10.1099/mic.0.079210-0

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., … Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8, 127–139. http://doi.org/10.2174/1874437001408010127

Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A., & Chet, I. (2002). Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Current Genetics, 42(2), 114–122. http://doi.org/10.1007/s00294-002-0345-4

Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965. http://doi.org/10.5897/AJAR2015.10584

Zhang, Y., Han, T., Ming, Q., Wu, L., Rahman, K., & Qin, L. (2012). Alkaloids produced by endophytic fungi: A review. Natural Product Communications, 7(7), 963–968. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22908594




DOI: http://doi.org/10.17503/agrivita.v41i1.2146

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.