Field Application of Trichoderma Suspension to Control Cacao Pod Rot (Phytophthora palmivora)
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, E., Arshad, M., Zakriyya Khan, M., Shoaib Amjad, M., Mehreen Sadaf, H., Riaz, I., … Sabaoon. (2017). Secondary metabolites and their multidimensional prospective in plant life. Journal of Pharmacognosy and Phytochemistry, 6(2), 205–214. Retrieved from website
Aneja, M., Gianfagna, T. J., & Hebbar, P. K. (2005). Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology, 67, 304–307. crossref
Asrul. (2009). Uji daya hambat jamur antagonis Trichoderma spp dalam formulasi kering berbentuk tablet terhadap luas bercak Phytophthora palmivora pada buah kakao. Agrisains, 10(1), 21–27. Retrieved from website
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. crossref
Cardoza, R.-E., Hermosa, M.-R., Vizcaino, J.-A., Sanz, L., Monte, E., & Gutiérrez, S. (2005). Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. Microorganisms for Industrial Enzymes and Biocontrol, 37(2), 1–22. Retrieved from website
Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97(12), 1650–1653. crossref
Hamrounı, R., Molınet, J., Dupuy, N., Masmoudı, A., & Roussos, S. (2017). Trichoderma spores and 6-pentyl-alpha-pyrone production in solid state culture for biological control. In 15th International Conference on Environmental Science and Technology (p. 4). Rhodes, Greece: CEST. Retrieved from pdf
Hanada, R. E., Pomella, A. W. V., Soberanis, W., Loguercio, L. L., & Pereira, J. O. (2009). Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biological Control, 50(2), 143–149. crossref
Howell, C. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. crossref
Howell, C. R., & Puckhaber, L. S. (2005). A study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biological Control, 33(2), 217–222. crossref
Kullnig, C., Mach, R. L., Lorito, M., & Kubicek, C. P. (2000). Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Applied and Environmental Microbiology, 66(5), 2232–2234. crossref
Kumaresan, S., Karthi, V., Senthilkumar, V., Balakumar, B. S., & Stephen, A. (2015). Biochemical constituents and antioxidant potential of endophytic fungi isolated from the leaves of Azadirachta indica A. Juss (Neem) from Chennai, India. Journal of Academia and Industrial Research, 3(8), 355-361. Retrieved from website
Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155–166. Retrieved from pdf
Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2 Special Isuue), 232–249. Retrieved from pdf
Mbarga, J. B., Martijn Ten Hoopen, G., Begoude, A. D., Tondje, P. R., Kuate, J., Ambang, Z., … Schiffers, B. (2012). Efficacy of Trichoderma asperellum oil formulations on the control of cocoa black pod disease (Phytophthora megakarya). Communications in Agricultural and Applied Biological Sciences, 77(3), 65–74. Retrieved from website
Muzuni, Indradewi, R., & Baharudin. (2015). Ketahanan tanaman kakao terhadap serangan Phytophthora palmivora dan Oncobasidium theobromae di Kabupaten Konawe Sulawesi Tenggara. Paradigma, 19(1), 67–82. Retrieved from website
Nevalainen, H., Kautto, L., & Te’o, J. (2014). Methods for isolation and cultivation of filamentous fungi. In I. Paulsen & A. Holmes (Eds.), Environmental microbiology: Methods in molecular biology (Methods and protocols) (Vol. 1096) (pp. 3-16). Totowa, NJ: Humana Press. crossref
Panwar, V., Aggarwal, A., Singh, G., Verma, A., Sharma, I., Saharan, M., & A Singh, A. (2014). Efficacy of foliar spray of Trichoderma isolates against Fusarium graminearum causing head blight of wheat. Journal of Wheat Research, 6(1), 59–63. Retrieved from website
Sawant, I. S. (2014). Trichoderma-Foliar pathogen interactions. The Open Mycology Journal, 8, 58–70. Retrieved from pdf
Seng, J., Herrera, G., Vaughan, C. S., & McCoy, M. B. (2014). Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica. Revista De Biologia Tropical, 62(3), 899–907. Retrieved from website
Song, X.-Y., Shen, Q.-T., Xie, S.-T., Chen, X.-L., Sun, C.-Y., & Zhang, Y.-Z. (2006). Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260(1), 119–125. crossref
Sriwati, R., Melnick, R. L., Muarif, R., Strem, M. D., Samuels, G. J., & Bailey, B. A. (2015). Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biological Control, 89, 33–41. crossref
Vanegtern, B., Rogers, M., & Nelson, S. (2015). Black pod rot of cacao caused by Phytophthora palmivora. Plant Disease. Manoa. Retrieved from pdf
Vargas, W. A., Mukherjee, P. K., Laughlin, D., Wiest, A., Moran-Diez, M. E., & Kenerley, C. M. (2014). Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (United Kingdom), 160, 2319–2330. crossref
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., … Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8, 127–139. crossref
Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A., & Chet, I. (2002). Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Current Genetics, 42(2), 114–122. crossref
Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965. crossref
Zhang, Y., Han, T., Ming, Q., Wu, L., Rahman, K., & Qin, L. (2012). Alkaloids produced by endophytic fungi: A review. Natural Product Communications, 7(7), 963–968. Retrieved from website
DOI: http://doi.org/10.17503/agrivita.v41i1.2146
Copyright (c) 2019 Universitas Brawijaya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.