Heterosis, Combining Ability and Their Inter-Relationship for Morphological and Quality Traits in Yellow Maize (Zea mays L.) Single-Crosses Across Environments

T. N. Bhusal, G. M. Lal

Abstract

khk
The research aimed to study heterosis, combining ability and performance along with their inter-relationship across three environments. Variance due to general (GCA) and specific combining abilities (SCA) and their interaction with environment was found to be significant for most of studied traits. For all the studied traits but ASI (Anthesis-silking interval), HI (Harvest index) and starch content, additive gene action was highly important than non-additive gene action for their expression as reflected by Baker's ratio which was near to unity. CML439, R13-1-1 and Tarun83-1-3-2 were the best general combiner for starch, protein and oil, respectively. R13-1-17, CML439 and Tarun83-1-3-2 were good general combiner for maturity characters and harvest index while TSK 196 and TSK 197 were good general combiner for cob length, cob girth, number of grains/row and grain yield. DMR9047×R13-1-17 and POP31Q×Tarun83-1-3-2 showed desirable heterosis and SCA effect for maturity characters. Regarding to SCA and heterosis, the prominent hybrids for grain yield were TSK197×R13-1-10, TSK194×POP31Q, DMR9047×POP31Q and R13-1-1×DMR9047. SCA established stronger relationship with per se performance of grain yield and quality traits than mid-parent (MPH) and best-parent heterosis (BPH), reflecting that an improvement in selection of SCA will results in an indirect improvement of MPH and BPH of hybrids.

Keywords


Combining ability; Heterosis; Morphological traits; Pearson’s correlation; Quality traits

Full Text:

PDF

References


Abdel-Moneam, M. A., Sultan, M. S., Sadek, S. E., & Shalof, M. S. (2014). Estimation of heterosis and genetic parameters for yield and yield components in maize using the diallel cross method. Asian Journal of Crop Science, 6, 101–111. https://doi.org/10.3923/ajcs.2014.101.111

Ali, S., Khan, N. U., Gul, R., Naz, I., Goher, R., Ali, N., … Saeed, M. (2018). Genetic analysis for earliness and yield traits in maize. Pakistan Journal of Botany, 50(4), 1395–1405. Retrieved from https://www.semanticscholar.org/paper/GENETIC-ANALYSIS-FOR-EARLINESS-AND-YIELD-TRAITS-IN-Ali-Khan/a84290a3559725ac454912a4b2dbc2ef950840a6

Alika, J. E., & Ojomo, J. O. (1996). Combining ability and reciprocal effects for physico-chemical grain quality characteristics in maize. Food Chemistry, 57(3), 371–375. https://doi.org/10.1016/0308-8146(95)00195-6

Amiruzzaman, M., Islam, M. A., Hasan, L., Kadir, M., & Rohman, M. M. (2013). Heterosis and combining ability in a diallel among elite inbred lines of maize (Zea mays L.). Emirates Journal of Food and Agriculture, 25(2), 132–137. https://doi.org/10.9755/ejfa.v25i2.6084

AOAC. (1975). Official methods of analysis (12th ed.). Washington, DC: Association of Official Analytical Chemists.

Badu-Apraku, B., Annor, B., Oyekunle, M., Akinwale, R. O., Fakorede, M. A. B., Talabi, A. O., … Fasanmade, Y. (2015). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183, 169–183. https://doi.org/10.1016/j.fcr.2015.07.015

Badu-Apraku, B., Fakorede, M. A. B., Talabi, A. O., Oyekunle, M., Akaogu, I. C., Akinwale, R. O., … Aderounmu, M. (2016). Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Science, 56(1), 183–199. https://doi.org/10.2135/cropsci2015.05.0276

Baker, R. J. (1978). Issues in diallel analysis. Crop Science, 18(4), 533–536. https://doi.org/10.2135/cropsci1978.0011183x001800040001x

Balestre, M., Von Pinho, R. G., Souza, J. C., & Lima, J. L. (2008). Comparison of maize similarity and dissimilarity genetic coefficients based on microsatellite markers. Genetics and Molecular Research, 7(3), 695–705. https://doi.org/10.4238/vol7-3gmr458

Beck, D., Vasal, S., & Crossa, J. (1990). Heterosis and combining ability of CIMMYT’s tropical early and intermediate maturity maize (Zea mays L.) germplasm. Maydica, 35(3), 279–285. Retrieved from https://repository.cimmyt.org/handle/10883/1927

Bekeko, Z., Fininsa, C., Wegary, D., Hussien, T., Hussien, S., & Asalf, B. (2018). Combining ability and nature of gene action in maize (Zea mays L) inbred lines for resistance to gray leaf spot disease (Cercospora zeae maydis) in Ethiopia. Crop Protection, 112, 39–48. https://doi.org/10.1016/j.cropro.2018.05.010

Bello, O. B., & Olawuyi, O. J. (2015). Gene action, heterosis, correlation and regression estimates in developing hybrid cultivars in maize. Tropical Agriculture, 92(2), 102–117. Retrieved from https://www.researchgate.net/publication/271195887_Gene_action_heterosis_correlation_and_regression_estimates_in_developing_hybrid_cultivars_in_maize

Bhusal, T. N., & Lal, G. M. (2017). Relationship among heterosis, combining ability and SSR based genetic distance in single cross hybrids of maize (Zea mays L). Vegetos - An International Journal of Plant Research, 30(2), 1–10. Retrieved from https://www.researchgate.net/publication/320399132_Relationship_among_Heterosis_Combining_Ability_and_SSR_Based_Genetic_Distance_in_Single_Cross_Hybrids_of_Maize_Zea_Mays_L

Chigeza, G., Mashingaidze, K., & Shanahan, P. (2014). Advanced cycle pedigree breeding in sunflower. II: Combining ability for oil yield and its components. Euphytica, 195, 183–195. https://doi.org/10.1007/s10681-013-0985-0

Clegg, K. M. (1956). The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture, 7(1), 40–44. https://doi.org/10.1002/jsfa.2740070108

Dass, S., Manivannan, A., Kaul, J., Singode, A., Sekhar, J., & Chikkappa, G. (2010). Inbred-hybrid technology in maize. DMR Technical Bulletin 2010. New Delhi, India: Directorate of Maize Research. Retrieved from https://www.researchgate.net/publication/290911718_Inbred-Hybrid_Technology_in_Maize

Devi, P., & Singh, N. K. (2011). Heterosis, molecular diversity, combining ability and their interrelationships in short duration maize (Zea mays L.) across the environments. Euphytica, 178, 71–81. https://doi.org/10.1007/s10681-010-0271-3

Dey, S. S., Singh, N., Bhatia, R., Parkash, C., & Chandel, C. (2014). Genetic combining ability and heterosis for important vitamins and antioxidant pigments in cauliflower (Brassica oleracea var. botrytis L.). Euphytica, 195, 169–181. https://doi.org/10.1007/s10681-013-0981-4

El-Badawy, M. E. M. (2013). Heterosis and combining ability in maize using diallel crosses among seven new inbred lines. Asian Journal of Crop Science, 5, 1–13. https://doi.org/10.3923/ajcs.2013.1.13

Estakhr, A., & Heidari, B. (2012). Combining ability and gene action for maturity and agronomic traits in different heterotic groups of maize inbred lines and their diallel crosses. Journal of Crop Science and Biotechnology, 15, 219–229. https://doi.org/10.1007/s12892-012-0030-1

Fry, J. D. (2004). Estimation of genetic variances and covariances by restricted maximum likelihood using PROC MIXED. In A. M. Saxton (Ed.), Genetic analysis of complex traits using SAS (pp. 11–34). Cary, NC: SAS Institute. Retrieved from https://books.google.co.id/books?id=KUar026FM20C

Gardner, C. O. (1963). Estimates of genetic parameters in cross-fertilizing plants and their implications in plant breeding. In W. D. Hanson & H. F. Robinson (Eds.), NAS-NRC Publ. 982 (pp. 225–252). Washington, DC: NAS-NRC.

Griffing, B. (1956a). A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity, 10, 31–50. https://doi.org/10.1038/hdy.1956.2

Griffing, B. (1956b). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9(4), 463–493. https://doi.org/10.1071/bi9560463

Guerrero, C. G., Gallegos Robles, M. A., Luna Ortega, J. G., Castillo, I. O., Vázquez, C. V., Carrillo, M. G., … Torres, A. G. (2014). Combining ability and heterosis in corn breeding lines to forage and grain. American Journal of Plant Sciences, 5(6), 1–12. https://doi.org/10.4236/ajps.2014.56098

Hakizimana, F., Ibrahim, A. M. H., Langham, M. A. C., Haley, S. D., & Rudd, J. C. (2004). Diallel analysis of wheat streak mosaic virus resistance in winter wheat. Crop Science, 44, 89–92. https://doi.org/10.2135/cropsci2004.8900

Hallauer, A. R., & Miranda Filho, J. B. (1988). Quantitative genetics in maize breeding. Ames: Iowa State University Press.

Hayman, B. I. (1954). The analysis of variance of diallel tables. Biometrics, 10(2), 235–244. https://doi.org/10.2307/3001877

Hefny, M. (2010). Genetic control of flowering traits, yield and its components in maize (Zea mays L.) at different sowing dates. Asian Journal of Crop Science, 2, 236–249. https://doi.org/10.3923/ajcs.2010.236.249

Herczegh, M. (1970). Importance of yield components in the phenotype. In I. Kovacs (Ed.), Akademiai Kiado (pp. 229–236). Retrieved from https://www.cabdirect.org/cabdirect/abstract/19701607326

Kamara, M. M., El-Degwy, I. S., & Koyama, H. (2014). Estimation combining ability of some maize inbred lines using line × tester mating design under two nitrogen levels. Australian Journal of Crop Science, 8(9), 1336–1342. Retrieved from https://search.informit.com.au/documentSummary;dn=675939481968329;res=IELHSS

Khan, R., Dubey, R. B., Vadodariya, G. D., & Patel, A. I. (2014). Heterosis and combining ability for quantitative and quality traits in maize (Zea mays L.). Trends in Biosciences, 7(6), 422–424. Retrieved from http://trendsinbiosciencesjournal.com/upload/5-793_(RUMANA_KHAN).pdf

Kumar, R., Singode, A., Chikkappa, G. K., Mukri, G., Dubey, R. B., Komboj, M. C., … Yadav, O. P. (2014). Assessment of genotype × environment interactions for grain yield in maize hybrids in rainfed environments. Sabrao Journal of Breeding and Genetics, 46(2), 284–292. Retrieved from https://www.researchgate.net/publication/286502708_Assessment_of_genotype_environment_interactions_for_grain_yield_in_maize_hybrids_in_rainfed_environments

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275. Retrieved from https://www.jbc.org/content/193/1/265.long

Lu, Y., Zhang, S., Shah, T., Xie, C., Hao, Z., Li, X., … Xu, Y. (2010). Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19585–19590. https://doi.org/10.1073/pnas.1006105107

Mahesh, N., Wali, M. C., Gowda, M. V. C., Motagi, B. N., & Uppinal, N. F. (2013). Genetic analysis of grain yield, starch, protein and oil content in single cross hybrids of maize*. Karnataka Journal of Agricultural Science, 26(2), 185–189. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1013.2967&rep=rep1&type=pdf

Milić, D., Katić, S., Karagić, Đ., Gvozdanović–Varga, J., Petrović, S., & Boćanski, J. (2011). Genetic control of agronomic traits in alfalfa (M. sativa ssp. sativa L.). Euphytica, 182(1), 25–33. https://doi.org/10.1007/s10681-011-0434-x

Muñoz, P. R., Resende, M. F., Jr, Gezan, S. A., Resende, M. D., de Los Campos, G., Kirst, M., ... Peter, G. F. (2014). Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics, 198(4), 1759–1768. https://doi.org/10.1534/genetics.114.171322

Ndhlela, T., Herselman, L., Semagn, K., Magorokosho, C., Mutimaamba, C., & Labuschagne, M. T. (2015). Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica, 204, 635–647. https://doi.org/10.1007/s10681-015-1353-z

Njeri, S. G., Makumbi, D., Warburton, M. L., Diallo, A., Jumbo, M. D. B., & Chemining’wa, G. (2017). Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm. Euphytica, 213, 261. https://doi.org/10.1007/s10681-017-2048-4

Owusu, G. A., Nyadanu, D., Obeng-Antwi, K., Amoah, R. A., Danso, F. C., & Amissah, S. (2017). Estimating gene action, combining ability and heterosis for grain yield and agronomic traits in extra-early maturing yellow maize single-crosses under three agro-ecologies of Ghana. Euphytica, 213, 287. https://doi.org/10.1007/s10681-017-2081-3

Preciado-Ortiz, R. E., Terrón-Ibarra, A. D., Gómez-Montiel, N., & Robledo-González, E. I. (2005). Componentes genéticos en poblaciones heteróticamente contrastantes de maíz de origen tropical y subtropical. Agronomía Mesoamericana, 16(2), 145–151. https://doi.org/10.15517/am.v16i2.11867

Rahman, H., Ali, A., Shah, Z., Iqbal, M., Noor, M., & Amanullah. (2013). Line x tester analysis for grain yield and yield related traits in maize variety Sarhad-White. Pakistan Journal of Botany, 45(S1), 383–387. Retrieved from https://www.pakbs.org/pjbot/PDFs/45(S1)/51.pdf

Rajitha, A., Babu, D. R., Mohammad, L. A., & Rao, V. S. (2014). Heterosis and combining ability for grain yield and yield component traits in maize (Zea mays L.). Electronic Journal of Plant Breeding, 5(3), 378–384. Retrieved from http://www.ejplantbreeding.org/index.php/EJPB/article/view/28

Ruswandi, D., Supriatna, J., Makkulawu, A. T., Waluyo, B., Marta, H., Suryadi, E., & Ruswandi, S. (2015). Determination of combining ability and heterosis of grain yield components for maize mutants based on line×tester analysis. Asian Journal of Crop Science, 7(1), 19–33. https://doi.org/10.3923/ajcs.2015.19.33

Seymour, D. K., Chae, E., Grimm, D. G., Pizarro, C. M., Habring-Müller, A., Vasseur, F., ... Weigel, D. (2016). Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proceedings of the National Academy of Sciences of the United States of America, 113(46), E7317–E7326. https://doi.org/10.1073/pnas.1615268113

Sherpa, P., Seth, T., Shende, V. D., Pandiarana, N., Mukherjee, S., & Chattopadhyay, A. (2014). Heterosis, dominance estimate and genetic control of yield and post harvest quality traits of tomato. Journal of Applied and Natural Science, 6(2), 625-632. https://doi.org/10.31018/jans.v6i2.507

Shiri, M., Aliyev, R. T., & Choukan, R. (2010). Water stress effects on combining ability and gene action of yield and genetic properties of drought tolerance indices in maize. Research Journal of Environmental Sciences, 4(1), 75–84. https://doi.org/10.3923/rjes.2010.75.84

Singh, P. K., Singh, N., Singh, A. K., Shahi, J. P., & Rao, M. (2013). Heterosis in relation to combining ability in quality protein protein maize (Zea mays L.). Biolife, 1(2), 65–69. Retrieved from https://www.researchgate.net/publication/291262135_HETEROSIS_IN_RELATION_TO_COMBINING_ABILITY_IN_QUALITY_PROTEIN_MAIZE_ZEA_MAYS_L

Soriano Viana, J. M., & de Pina Matta, F. (2003). Analysis of general and specific combining abilities of popcorn populations, including selfed parents. Genetics and Molecular Biology, 26(4), 465-471. https://doi.org/10.1590/S1415-47572003000400010

Sprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. Agronomy Journal, 34(10), 923–932. https://doi.org/10.2134/agronj1942.00021962003400100008x

Turner Jr, J. H. (1953). A study of heterosis in upland cotton II. Combining ability and inbreeding effects. Agronomy Journal, 45, 484–486. https://doi.org/10.2134/agronj1953.00021962004500100007x

Umar, U. U., Ado, S. G., Aba, D. A., & Bugaje, S. M. (2014). Estimates of combining ability and gene action in maize (Zea mays L.) under water stress and non-stress conditions. Journal of Biology, Agriculture and Helthcare, 4(25), 247–253. Retrieved from https://www.iiste.org/Journals/index.php/JBAH/article/view/17398

Vasal, S. K. (2000). Hybrid maize technology: Challenges and expanding possibilities for research in the next century. In S. K. Vasal, F. Gonzalez Ceniceros, & F. XiongMing (Eds.), Proceedings of 7th Asian Regional Maize Workshop (pp. 58–62). Los Baños, Laguna (Philippines): PCARRD. Retrieved from https://knowledgecenter.cimmyt.org/cgi-bin/koha/opac-detail.pl?biblionumber=6313&shelfbrowse_itemnumber=6332

Wassimi, N. N., Isleib, T. G., & Hosfield, G. L. (1986). Fixed effect genetic analysis of a diallel cross in dry beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 72, 449–454. https://doi.org/10.1007/BF00289525

Zare, M., Choukan, R., Heravan, E. M., Bihamta, M. R., & Ordookhani, K. (2011). Gene action of some agronomic traits in corn (Zea mays L.) using diallel cross analysis. African Journal of Agricultural Research, 6(3), 693–703. Retrieved from https://www.researchgate.net/publication/266493793_Gene_action_of_some_agronomic_traits_in_corn_Zea_mays_L_using_diallel_cross_analysis




DOI: http://doi.org/10.17503/agrivita.v42i1.2089

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.