Preliminary Study of WOFOST Crop Simulation in Its Prospect for Soybean (Glycine max L.) Optimum Harvest Time and Yield Gap Analysis in East Java
Abstract
Keywords
Full Text:
PDFReferences
Balitkabi. (2016). Deskripsi varietas unggul: Aneka kacang dan umbi. Malang, ID: Balai Penelitian Tanaman Aneka Kacang dan Umbi. Retrieved from website
Bellocchi, G., Rivington, M., Donatelli, M., & Matthews, K. (2011). Validation of biophysical models: Issues and methodologies. In Lichtfouse. E., Hamelin. M., Navarrete. M., & Debaeke. P. (Eds.), Sustainable Agriculture (2nd ed., pp. 577–603). Dordrecht: Springer. crossref
Boogaard, H., Wolf, J., Supit, I., Niemeyer, S., & van Ittersum, M. (2013). A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 143, 130–142. crossref
de Wit, A., Boogaard, H., van Diepen, K., van Kraalingen, D., Rötter, R., Supit, I., … van Ittersum, M. (2015). WOFOST developer’s response to article by Stella et al., Environmental Modelling & Software 59 (2014): 44-58. Environmental Modelling & Software, 73, 57–59. crossref
Eweys, O. A., Elwan, A. A., & Borham, T. I. (2017). Integrating WOFOST and Noah LSM for modeling maize production and soil moisture with sensitivity analysis, in the east of The Netherlands. Field Crops Research, 210, 147–161. crossref
Fischer, R. A. (2015). Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research, 182, 9–18. crossref
Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M. E., … Confalonieri, R. (2016). WOFOST-GTC: A new model for the simulation of winter rapeseed production and oil quality. Field Crops Research, 197, 125–132. crossref
Grassini, P., Torrion, J. A., Yang, H. S., Rees, J., Andersen, D., Cassman, K. G., & Specht, J. E. (2015). Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crops Research, 179, 150–163. crossref
Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., … Wu, W. (2015). Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106–121. crossref
Jin, M., Liu, X., Wu, L., & Liu, M. (2015). An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. International Journal of Applied Earth Observation and Geoinformation, 41, 118–129. crossref
Koentjoro, B. S., Sitanggang, I. S., & Makarim, A. K. (2015). Model simulasi dan visualisasi prediksi potensi hasil dan produksi kedelai di Jawa Timur. Jurnal Penelitian Pertanian Tanaman Pangan, 34(3), 195–201. crossref
Kroes, J. G., & Supit, I. (2011). Impact analysis of drought, water excess and salinity on grass production in The Netherlands using historical and future climate data. Agriculture, Ecosystems and Environment, 144(1), 370–381. crossref
Mourtzinis, S., Gaspar, A. P., Naeve, S. L., & Conley, S. P. (2017). Planting date, maturity, and temperature effects on soybean seed yield and composition. Agronomy Journal, 109(5), 2040–2049. crossref
Poerwoko, M. S. (2016). Breeding of the soybean varieties, aged maturity and resistant to rust disease. Agriculture and Agricultural Science Procedia, 9, 197–201. crossref
Pound, B., & Conroy, C. (2017). The innovation systems approach to agricultural research and development. In Sieglinde S. & Barry B. T. P. (Eds.), Agricultural Systems: Agroecology and Rural Innovation for Development (2nd ed., pp. 371–405). San Diego: Academic Press. crossref
Rattalino Edreira, J. I., Mourtzinis, S., Conley, S. P., Roth, A. C., Ciampitti, I. A., Licht, M. A., … Grassini, P. (2017). Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agricultural and Forest Meteorology, 247, 170–180. crossref
Salmerón, M., & Purcell, L. C. (2016). Simplifying the prediction of phenology with the DSSAT-CROPGRO-soybean model based on relative maturity group and determinacy. Agricultural Systems, 148, 178–187. crossref
Setiyono, T. D., Cassman, K. G., Specht, J. E., Dobermann, A., Weiss, A., Yang, H., … De Bruin, J. L. (2010). Simulation of soybean growth and yield in near-optimal growth conditions. Field Crops Research, 119(1), 161–174. crossref
Smidt, E. R., Conley, S. P., Zhu, J., & Arriaga, F. J. (2016). Identifying field attributes that predict soybean yield using random forest analysis. Agronomy Journal, 108, 637–646. crossref
Statistics Indonesia. (2017). Luas panen, produksi dan produktivitas kedelai tahun 1993-2015 [Soybean harvested area, production and yield in 1993-2015]. Retrieved from website
Tastra, I. K., Erliana, G., & Fatah, G. S. A. (2012). Menuju swasembada kedelai melalui penerapan kebijakan yang sinergis. Iptek Tanaman Pangan, 7(1), 47–57. Retrieved from website
Tastra, I. K., Koentjoro, B. S., & Abadi, F. R. (2017). Pengembangan model simulasi potensi hasil kedelai berbasis web (Sucsoy.Ins). In Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi 2017 (pp. 296–313). Retrieved from PDF
Ugwuoke, P., & Okeke, C. (2012). Statistical assessment of average global and diffuse solar radiation on horizontal surfaces in tropical climate. International Journal of Renewable Energy Research, 2(2), 269–273. Retrieved from website
Wegerer, R., Popp, M., Hu, X., & Purcell, L. (2015). Soybean maturity group selection: Irrigation and nitrogen fixation effects on returns. Field Crops Research, 180, 1–9. crossref
Zhang, L., Van Der Werf, W., Cao, W., Li, B., Pan, X., & Spiertz, J. H. J. (2008). Development and validation of SUCROS-cotton: A potential crop growth simulation model for cotton. NJAS - Wageningen Journal of Life Sciences, 58(1–2), 59–83. crossref
DOI: http://doi.org/10.17503/agrivita.v40i3.1832
Copyright (c) 2018 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.