Different Root Anatomical Changes in Salt-tolerant and Salt-sensitive Foxtail Millet Genotypes

Nike Karjunita, Nurul Khumaida, Sintho Wahyuning Ardie

Abstract


Foxtail millet is relatively tolerant to salinity stress and thus can be grown in salinity affected areas. This study was conducted to identify anatomical changes in the roots of foxtail millet genotypes with different tolerance level to salt stress. Four foxtail millet genotypes, namely ICERI-5 and ICERI-6 (salt tolerant) and ICERI-4 and ICERI-10 (salt sensitive), were grown hydroponically for 1 week prior to 60 and 120 mM salt stress treatments. Root anatomical changes were observed on the fifth day after treatments. The results showed that salt stress significantly induced some anatomical changes in the roots of foxtail millet, i.e. increased epidermis and cortex thickness, increased root diameter, and increased the number of root hairs. The increase in epidermis thickness, root diameter and the number of root hairs due to the salt application were more pronounced in the sensitive genotypes. Number of protoxylem in the tolerant genotypes were significantly increased due to salt stress, however salinity significantly decreased the number of protoxylem in the sensitive genotypes. The different anatomical changes under salt stress between the tolerant- and sensitive genotypes indicated that some anatomical attributes of the roots might determine the salt tolerance level of foxtail millet.


Keywords


abiotic stress; protoxylem; root hair; Setaria italica L. Beauv., tolerance mechanism

Full Text:

PDF

References


FAO. (2019). Extent of salt-affected soils. FAO Soils Portal Fao Soils Portal. Retrieved from: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/

Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. http://doi.org/10.3390/agronomy7010018

Akram, M., Akhtar, S., Javed, I.-U.-H., Wahid, A., & Rasul, E. (2002). Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. International Journal of Agriculture & Biology, 4(1), 166–168. Retrieved from http://www.fspublishers.org/published_papers/89945_..pdf

Amadou, I., Gounga, M. E., & Le, G. W. (2013). Millets: Nutritional composition, some health benefits and processing - A review. Emirates Journal of Food and Agriculture, 25(7), 501–508. http://doi.org/10.9755/ejfa.v25i7.12045

Ardie, S. W., Khumaida, N., Fauziah, N., & Yudiansyah. (2017). Biodiversity assessment of foxtail millet (Setaria italica L.) genotypes based on RAPD marker. Journal of Tropical Crop Science, 4(1), 21–25. Retrieved from http://www.j-tropical-crops.com/index.php/agro/article/view/128

Ardie, S. W., Khumaida, N., Nur, A., & Fauziah, N. (2015). Early identification of salt tolerant foxtail millet (Setaria Italica L. Beauv). Procedia Food Science, 3, 303–312. http://doi.org/10.1016/j.profoo.2015.01.033

Bandyopadhyay, T., Muthamilarasan, M., & Prasad, M. (2017). Millets for next generation climate-smart agriculture. Frontiers in Plant Science, 8, 1266. http://doi.org/10.3389/fpls.2017.01266

Çavuşğolu, K., Kılıç, S., & Kabar, K. (2008). Effects of growth regulators on anatomy of radish roots under saline conditions. Journal of Applied Biological Sciences, 2(3), 61. Retrieved from http://connection.ebscohost.com/c/articles/36334883/effects-growth-regulators-anatomy-radish-roots-under-saline-conditions

Céccoli, G., Ramos, J. C., Ortega, L. I., Acosta, J. M., & Perreta, M. G. (2011). Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell, 35(1), 9–17. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21667667

Chen, J., Duan, W., Ren, X., Wang, C., Pan, Z., Diao, X., & Shen, Q. (2017). Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats. European Journal of Nutrition, 56(6), 2129–2138. http://doi.org/10.1007/s00394-016-1252-7

Ding, Z., & De Smet, I. (2013). Localised ABA signalling mediates root growth plasticity. Trends in Plant Science, 18(10), 533–535. http://doi.org/10.1016/j.tplants.2013.08.009

Dolan, L., & Costa, S. (2001). Evolution and genetics of root hair stripes in the root epidermis. Journal of Experimental Botany, 52(suppl. 1), 413–417. http://doi.org/10.1093/jexbot/52.suppl_1.413

Duan, L., Dietrich, D., Ng, C. H., Chan, P. M. Y., Bhalerao, R., Bennett, M. J., & Dinneny, J. R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The Plant Cell, 25(1), 324–341. http://doi.org/10.1105/tpc.112.107227

Esau, K. (1977). Anatomy of seed plants (2nd ed.). New York, US: John Wiley and Sons.

Farhana, S., Rashid, P., & Karmoker, J. L. (2014). Salinity induced anatomical changes in maize (Zea mays L. cv. Bari-7). Dhaka University Journal of Biological Sciences, 23(1), 93–95. http://doi.org/10.3329/dujbs.v23i1.19832

Goron, T. L., & Raizada, M. N. (2015). Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Frontiers in Plant Science, 6, 157. http://doi.org/10.3389/fpls.2015.00157

Hajibagheri, M. A., Yeo, A. R., & Flowers, T. J. (1985). Salt tolerance in Suaeda maritima (L.) Dum. fine structure and ion concentrations in the apical region of roots. New Phytologist,

(3), 331–343. http://doi.org/10.1111/j.1469-8137.1985.tb03661.x

Hameed, M., Ashraf, M., Naz, N., Nawaz, T., Batool, R., Sajid Aqeel Ahmad, M., … Hussain, M. (2013). Anatomical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. II. leaf anatomy. Pakistan Journal of Botany, 45(S1), 133–142. Retrieved from https://www.pakbs.org/pjbot/PDFs/45(S1)/19.pdf

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 7, 1787. http://doi.org/10.3389/fpls.2016.01787

Islam M., S., Akhter, M. M., El Sabagh, A., Liu, L. Y., Nguyen, T. T., Ueda, A., … Saneoka, H. (2011). Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail Millet (Setaria italica L.) and Proso Millet (Panicum miliaceum L.). Australian Journal of Crop Science, 5(10), 1269–1277. Retrieved from https://search.informit.com.au/documentSummary;dn=746394857619200;res=IELHSS

Jali, M. V, Kamatar, M. Y., Jali, S. M., Hiremath, M. B., & Naik, R. K. (2012). Efficacy of value added foxtail millet therapeutic food in the management of diabetes and dyslipidamea in type 2 diabetic patients. Recent Research in Science and Technology, 4(7), 03–04. Retrieved from http://updatepublishing.com/journal/index.php/rrst/article/view/902

Kafi, M., Zamani, G., & Ghoraishi, S. G. (2009). Relative salt tolerance of South Khorasan millets. Desert, 14, 63–70. Retrieved from https://jdesert.ut.ac.ir/article_21748_c551f08cf6965b04e42946ee5ac61963.pdf

Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895–1904. http://doi.org/10.1093/jxb/eru075

Koyro, H.-W. (1997). Ultrastructural and physiological changes in root cells of Sorghum plants (Sorghum bicolor x S. sudanensis cv. Sweet Sioux) induced by NaCl. Journal of Experimental Botany, 48(308), 693–706. http://doi.org/10.1093/jxb/48.3.693

Krishnamurthy, L., Upadhyaya, H. D., Purushothaman, R., Gowda, C. L. L., Kashiwagi, J., Dwivedi, S. L., … Vadez, V. (2014). The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm. Plant Science, 227, 51–59. http://doi.org/10.1016/j.plantsci.2014.07.001

Mohammad, P., Shiraishi, M., & Ono, H. (1999). Changes induced by culture solution salinity to the anatomy of roots of trifoliate orange grafted with Satsuma Mandarin. Pakistan Journal of Biological Sciences, 2(3), 937–938. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=PK1999000429

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - what is the cost? New Phytologist, 208(3), 668–673. http://doi.org/10.1111/nph.13519

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. http://doi.org/10.1146/annurev.arplant.59.032607.092911

Muscolo, A., Sidari, M., Santonoceto, C., & De Santis, C. (2004). Kikuyu grass: effects of salinity and acidity on growth, biochemistry and root morphology. Recent Research Developments in Agronomy & Horticulture, 1, 89-101.

Nadeem, F., Ahmad, Z., Wang, R., Han, J., Shen, Q., Chang, F., … Li, X. (2018). Foxtail millet [Setaria italica (L.) Beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Frontiers in Plant Science, 9, 205. http://doi.org/10.3389/fpls.2018.00205

Ohki, K. (1987). Aluminum stress on sorghum growth and nutrient relationships. Plant and Soil, 98(2), 195–202. http://doi.org/10.1007/BF02374823

Panuccio, M. R., Logoteta, B., De Lorenzo, F., & Muscolo, A. (2011). Root plasticity improves salt tolerance in different genotypes of lentil (Lens culinaris). Ecological Questions, 14, 95–97. http://doi.org/10.2478/v10090-011-0027-2

Rewald, B., Shelef, O., Ephrath, J. E., & Rachmilevitch, S. (2012). Adaptive plasticity of salt-stressed root systems. In A. P., A. M., & P. M. (Eds.), Ecophysiology and responses of plants under salt stress (pp. 169–201). New York: Springer. http://doi.org/10.1007/978-1-4614-4747-4_6

Shan, S., Shi, J., Li, Z., Gao, H., Shi, T., Li, Z., & Li, Z. (2015). Targeted anti-colon cancer activities of a millet bran-derived peroxidase were mediated by elevated ROS generation. Food and Function, 6, 2331–2338. http://doi.org/10.1039/c5fo00260e

Sharma, S., Saxena, D. C., & Riar, C. S. (2018). Characteristics of β-glucan extracted from raw and germinated foxtail (Setaria italica) and kodo (Paspalum scrobiculatum) millets. International Journal of Biological Macromolecules, 118(Part A), 141–148. http://doi.org/10.1016/j.ijbiomac.2018.06.064

Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. http://doi.org/10.1016/j.sjbs.2014.12.001

Suma, P. F., & Urooj, A. (2012). Antioxidant activity of extracts from foxtail millet (Setaria italica). Journal of Food Science and Technology, 49(4), 500–504. http://doi.org/10.1007/s13197-011-0300-9

Tanaka, N., Kato, M., Tomioka, R., Kurata, R., Fukao, Y., Aoyama, T., & Maeshima, M. (2014). Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses. Journal of Experimental Botany, 65(6), 1497–1512. http://doi.org/10.1093/jxb/eru014

Wang, Y., Zhang, W., Li, K., Sun, F., Han, C., Wang, Y., & Li, X. (2008). Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. Journal of Plant Research, 121(1), 87–96. http://doi.org/10.1007/s10265-007-0123-y

Widyawan, M. H., Khumaida, N., Kitashiba, H., Nishio, T., & Ardie, S. W. (2018). Optimization of dot-blot snp analysis for the detection of drought or salinity stress associated marker in foxtail millet (Setaria italica L.). Sabrao Journal of Breeding and Genetics, 50(1), 72–84. Retrieved from http://sabraojournal.org/wp-content/uploads/2018/03/SABRAO-J-Breed-Genet-50-1-72-84-WIDYAWAN.pdf

Younis, A., Riaz, A., Ikram, S., Nawaz, T., Hameed, M., Fatima, S., … Ahmad, F. (2013). Salinity-induced structural and functional changes in 3 cultivars of Alternanthera bettzickiana (Regel) G. Nicholson. Turkish Journal of Agriculture and Forestry, 37, 674–687. http://doi.org/10.3906/tar-1301-78

Yu, T. F., Zhao, W. Y., Fu, J. D., Liu, Y. W., Chen, M., Zhou, Y. B., ... Xi, Y. J. (2018). Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Frontiers in Plant Science, 9, 651. http://doi.org/10.3389/fpls.2018.00651

Zhang, M., Kong, X., Xu, X., Li, C., Tian, H., & Ding, Z. (2015). Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress. PLoS ONE, 10(3), e0121222. http://doi.org/10.1371/journal.pone.0121222




DOI: http://doi.org/10.17503/agrivita.v41i1.1786

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.