Comparative Study of Nano-chitosan and Synthetic Bactericide Application on Chili Pepper (Capsicum annuum L.) Infected by Xanthomonas campestris

Rizkita R. Esyanti, Nadya Farah, Brahmani D. Bajra, Diah Nofitasari, Ronny Martien, Sunardi Sunardi, Ramadhani Safitri


Nano-chitosan is considered as a prospective replacement for synthetic bactericides. In this study, the antibacterial activity of nano-chitosan and synthetic bactericides was compared in four chili pepper cultivars (Bianca, Lado, Kiyo, and Tanamo) infected by Xanthomonas campestris. To assess the effect of nano-chitosan and synthetic bactericide on the growth of the X. campestris-infected chili pepper plants, some parameters were observed including the plant height, number of leaves and chlorophyll content. It was shown that nano-chitosan was highly effective in controlling the pathogen infection on Bianca, Lado, and Tanamo, but not significant on Kiyo. The application of synthetic bactericide, however, was effective on Bianca and Lado, but not significant on Kiyo and Tanamo. It was also shown that the application of nano-chitosan can improve the growth of the X. campestris-infected chili pepper plants based on the significant difference on the plant height, number of leaves and chlorophyll content of cultivars tested, especially in Kiyo, Lado, and Tanamo. The application of synthetic bactericide, however, did not significantly improve the growth of the X. campestris-infected chili pepper plants. Nano-chitosan was shown to be effective in reducing the infection of X. campestris and potentially be used as an alternative to synthetic bactericide.


Bacterial leaf spot; Chili pepper; Nano-chitosan; Synthetic bactericide

Full Text:



Atai, Z., Atai, M., Amini, J., & Salehi, N. (2017). In vivo study of antifungal effects of low-molecular-weight chitosan against Candida albicans. Journal of Oral Science, 59(3), 425–430. DOI

Chun, S. C., & Chandrasekaran, M. (2019). Chitosan and chitosan nanoparticles induced expression of pathogenesis related proteins genes enhances biotic stress tolerance in tomato. International Journal of Biological Macromolecules, 125, 948-954. DOI

Cui, H., Bai, M., Rashed, M. M. A., & Lin, L. (2018). The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. International Journal of Food Microbiology, 266, 69–78. DOI

D’Almeida, M., Attik, N., Amalric, J., Brunon, C., Renaud, F., Abouelleil, H., … Grosgogeat, B. (2017). Chitosan coating as an antibacterial surface for biomedical applications. PLoS ONE, 12(12), e0189537. DOI

Dananjaya, S. H. S., Erandani, W. K. C. U., Kim, C. H., Nikapitiya, C., Lee, J., & De Zoysa, M. (2017). Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. International Journal of Biological Macromolecules, 105(Part 1), 478–488. DOI

Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84(2), 751–755. DOI

EFSA PLH Panel (EFSA Panel on Plant Health). (2014). Scientific opinion on the pest categorisation of Xanthomonas campestris pv. vesicatoria (Doidge) Dye. EFSA Journal, 12(6), 1–26. DOI

El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968–987. DOI

Harris, W. E. (1953). Effect of five antibiotics in varying concentrations on growth of young corn plants,. Butler University Botanical Studies, 11(6), 71–86. Retrieved from website

Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 36, 655. Retrieved from PDF

Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1–9. DOI

Katiyar, D., Hemantaranjan, A., Singh, B., & Bhanu, A. N. (2014). A future perspective in crop protection: Chitosan and its oligosaccharides. Advances in Plants & Agriculture Research, 1(1), 23–30. DOI

Kim, N. H., Choi, H. W., & Hwang, B. K. (2010). Xanthomonas campestris pv. vesicatoria effector avrbst induces cell death in pepper, but suppresses defense responses in tomato. Molecular Plant-Microbe Interactions, 23(8), 1069–1082. DOI

López-Caballero, M. E., Gómez-Guillén, M. C., Pérez-Mateos, M., & Montero, P. (2005). A chitosan-gelatin blend as a coating for fish patties. Food Hydrocolloids, 19(2), 303–311. DOI

Meilin, A. (2014). Hama dan penyakit pada tanaman cabai serta pengendaliannya. Jambi: Balai Pengkajian Teknologi Pertanian Jambi. Retrieved from PDF

Ministry of Agriculture. (2019). Basis data ststistik pertanian. Retrieved from website

Nguyen Van, S., Dinh Minh, H., & Nguyen Anh, D. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289–294. DOI

Percival, G. C., Keary, I. P., & Noviss, K. (2008). The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), English oak (Quercus robur), and European beech (Fagus sylvatica). Arboriculture and Urban Forestry, 34(2), 89–100. Retrieved from website

Pham, T. T., Nguyen, T. H., Thi, T. V., Nguyen, T.-T., Le,T. D., Hoang Vo, D. M., ... Bach, L. G. (2019). Investigation of chitosan nanoparticles loaded with protocatechuic acid (PCA) for the resistance of Pyricularia oryzae fungus against rice blast. Polymers, 11(1), 177. DOI

Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., ... Jones, J. B. (2015). Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907-920. DOI

Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700. DOI

Rabea, E. I., Badawy, M. E. I., Steurbaut, W., & Stevens, C. V. (2009). In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. European Polymer Journal, 45(1), 237–245. DOI

Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1–27. DOI

Santiago, T. R., Bonatto, C. C., Rossato, M., Lopes, C. A. P., Lopes, C. A., Mizubuti, E. S. G., & Silva, L. P. (2019). Green synthesis of silver nanoparticles using tomato leaf extract and their entrapment in chitosan nanoparticles to control bacterial wilt. Journal of the Science of Food and Agriculture, 99(9), 4248-4259. DOI

Sharma, D., Cukras, A. R., Rogers, E. J., Southworth, D. R., & Green, R. (2007). Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. Journal of Molecular Biology, 374(4), 1065–1076. DOI

Uthairatanakij, A., da Silva, J. A. T., & Obsuwan, K. (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1(1), 1–5. Retrieved from PDF

Wang, Y., Li, L., Li, B., Wu, G., Tang, Q., Ibrahim, M., … Sun, G. (2012). Action of chitosan against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Molecules, 17, 7028–7041. DOI

Xing, Y., Li, X., Xu, Q., Yun, J., Lu, Y., & Tang, Y. (2011). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124(4), 1443–1450. DOI



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.