Creating High Levels of Gas Production From Waste Mushroom Substrate Pellets
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, I. I., & Gupta, A. K. (2010). Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Applied Energy, 87(1), 101–108. crossref
Ahmed, I., & Gupta, A. K. (2009). Characteristics of cardboard and paper gasification with CO2. Applied Energy, 86(12), 2626–2634. crossref
Aljbour, S. H., & Kawamoto, K. (2013). Benchscale gasification of cedar wood - Part I: Effect of operational conditions on product gas characteristics. Chemosphere, 90(4), 1495–1500. crossref
Basu, P. (2010a). Biomass gasification and pyrolysis: Practical design. Boston, USA: Academic Press. crossref
Basu, P. (2010b). Gasification theory and modeling of gasifiers. In Biomass Gasification and Pyrolysis - Practical Design (pp. 117–165). Academic Press. crossref
Biagini, E., Cioni, M., & Tognotti, L. (2005). Development and characterization of a lab-scale entrained flow reactor for testing biomass fuels. Fuel, 84(12–13), 1524–1534. crossref
Chen, W., Annamalai, K., Ansley, R. J., & Mirik, M. (2012). Updraft fixed bed gasification of mesquite and juniper wood samples. Energy, 41(1), 454–461. crossref
Commandré, J. M., Lahmidi, H., Salvador, S., & Dupassieux, N. (2011). Pyrolysis of wood at high temperature: The influence of experimental parameters on gaseous products. Fuel Processing Technology, 92(5), 837–844. crossref
Couhert, C., Commandre, J.-M., & Salvador, S. (2009). Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel, 88(3), 408–417. crossref
Dufour, A., Celzard, A., Fierro, V., Martin, E., Broust, F., & Zoulalian, A. (2008). Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Applied Catalysis A: General, 346(1–2), 164–173. crossref
Elbaba, I. F., & Williams, P. T. (2012). Two stage pyrolysiscatalytic gasification of waste tyres: Influence of process parameters. Applied Catalysis B: Environmental, 125, 136–143. crossref
Gordillo, G., & Annamalai, K. (2010). Adiabatic fixed bed gasification of dairy biomass with air and steam. Fuel, 89(2), 384–391. crossref
Gordillo, G., Annamalai, K., & Carlin, N. (2009). Adiabatic fixed-bed gasification of coal, dairy biomass, and feedlot biomass using an air-steam mixture as an oxidizing agent. Renewable Energy, 34(12), 2789–2797. crossref
Hosoya, T., Kawamoto, H., & Saka, S. (2007). Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. Journal of Analytical and Applied Pyrolysis, 78(2), 328–336. crossref
Kaewluan, S., & Pipatmanomai, S. (2011). Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Conversion and Management, 52(1), 75–84. crossref
Karamarkovic, R., & Karamarkovic, V. (2010). Energy and exergy analysis of biomass gasification at different temperatures. Energy, 35(2), 537–549. crossref
Karatas, H., Olgun, H., Engin, B., & Akgun, F. (2013). Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier. Fuel, 105, 566–571. crossref
Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2009). Steam-air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 100(6), 2062–2068. crossref
Matos, J., Nahas, C., Rojas, L., & Rosales, M. (2011). Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis. Journal of Hazardous Materials, 196, 360–369. crossref
Min, Z., Yimsiri, P., Asadullah, M., Zhang, S., & Li, C.-Z. (2011). Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel, 90(7), 2545–2552. crossref
Min, Z., Zhang, S., Yimsiri, P., Wang, Y., Asadullah, M., & Li, C.-Z. (2013). Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming. Fuel, 106, 858–863. crossref
Min, Z., Lin, J. -., Yimsiri, P., Asadullah, M., & Li, C. -.(2014). Catalytic reforming of tar during gasification. part V. decomposition of NOx precursors on the char-supported iron catalyst. Fuel, 116, 19-24. crossref
Molino, A., Larocca, V., Chianese, S., & Musmarra, D. (2018). Biofuels production by biomass gasification: A review. Energies, 11(4). crossref
Pattanotai, T., Watanabe, H., & Okazaki, K. (2013). Experimental investigation of intraparticle secondary reactions of tar during wood pyrolysis. Fuel, 104, 468–475. crossref
Saravanakumar, A., Haridasan, T. M., Reed, T. B., & Bai, R. K. (2007). Experimental investigations of long stick wood gasification in a bottom lit updraft fixed bed gasifier. Fuel Processing Technology, 88(6), 617–622. crossref
Sheeba, K. N., Babu, J. S. C., & Jaisankar, S. (2009). Air gasification characteristics of coir pith in a circulating fluidized bed gasifier. Energy for Sustainable Development, 13(3), 166–173. crossref
Skoulou, V., Swiderski, A., Yang, W., & Zabaniotou, A. (2009). Process characteristics and products of olive kernel high temperature steam gasification (HTSG). Bioresource Technology, 100(8), 2444–2451. crossref
Theerarattananoon, K., Xu, F., Wilson, J., Ballard, R., Mckinney, L., Staggenborg, S., … Wang, D. (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 33(2), 325–332. crossref
Vaezi, M., Passandideh-Fard, M., Moghiman, M., & Charmchi, M. (2012). On a methodology for selecting biomass materials for gasification purposes. Fuel Processing Technology, 98, 74–81. crossref
Wang, Z., Wang, F., Cao, J., & Wang, J. (2010). Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology, 91(8), 942–950. crossref
Weerachanchai, P., Horio, M., & Tangsathitkulchai, C. (2009). Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresource Technology, 100(3), 1419–1427. crossref
Wu, C., Wang, Z., Huang, J., & Williams, P. T. (2013). Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel, 106, 697–706. crossref
Yoon, S.-J., Son, Y.-I., Kim, Y.-K., & Lee, J.-G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. crossref
Zhao, Y., Sun, S., Tian, H., Qian, J., Su, F., & Ling, F. (2009). Characteristics of rice husk gasification in an entrained flow reactor. Bioresource Technology, 100(23), 6040–6044. crossref
DOI: http://doi.org/10.17503/agrivita.v41i2.1249
Copyright (c) 2019 UNIVERSITAS BRAWIJAYA

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.