Improvement Chemical Properties of Oxisols and Rice Production with Humic Substances from Sub-bituminous Coal Indonesia

Herviyanti Herviyanti, Gusnidar Gusnidar, M. Harianti, A. Maulana

Abstract


Humic Substances (HS) sources of  Sub-bituminous can be used as soil amandement. The purpose of this research was to examine the residual effects of HS combined with P-fertilizers and the method of  incubation to improve Oxisols fertility and rice production. The experiment consisted of 2 factors, including: 1) incubation methods (i.e. I1 = HS incubated 1 week, then incubation of P fertilizers 1 week; I2 = HS and P- fertilizers directly incubated into the soil  2 weeks; and I3 = HS and P-fertilizers mixed 1 week, then incubated to soil 1 week), and 2) residual effect of HS with P-fertilizers combinations (i.e. H1 = 800 ppm + 100%; H2 = 800 ppm + 75% R; H3 = 400 ppm + 100% R; and H4 = 400 ppm + 75% R). All treatment was compared to the tradition of fertilization by the local farmers and control. The results showed that the combination of residual effects (HS and P-fertilizers) with the incubation method decreased exchangeable Al, as consequently increased the available P in Oxisols. The HS addition increased the efficiency of P fertilizers up to 25%, as well as increased rice production in averaged 3.9 t/ha (i.e. treatment H4).

Keywords


Humic Substances; Oxisol; P-fertilizer; Rice; Sub-bituminous

Full Text:

PDF

References


dos Santos, L. L., Lacerda, J. J. J., & Zinn, Y. L. (2013). Partitioning of humic substances in brazilian soils. Revista Brasileira de Ciência do Solo, 37(4), 955-968. crossref

Eviati, & Sulaeman. (2009). Petunjuk teknis: Analisis kimia tanah, tanaman, air dan pupuk. (B. H. Prasetyo, D. Santoso, & L. R. W., Eds.) (2nd ed.). Bogor, ID: Balai Penelitian Tanah. Retrieved from pdf

Fiorentino, G., Spaccini, R., & Piccolo, A. (2006). Separation of molecular constituents from a humic acid by solid-phase extraction following a transesterification reaction. Talanta, 68(4), 1135–1142. crossref

Goyer, R. A. (1997). Toxic and essential metal interactions. Annual Review of Nutrition, 17, 37–50. crossref

Haryadi, H., & Suciyanti, M. (2018). Analisis perkiraan kebutuhan batubara untuk industri domestik tahun 2020-2035 dalam mendukung kebijakan domestic market obligation dan kebijakan energi Nasional. Jurnal Teknologi Mineral Dan Batubara, 14(1), 59-73. crossref

Heckman, K., Lawrence, C. R., & Harden, J. W. (2018). A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 312, 24–35. crossref

Herviyanti, Prasetyo, T. B., Ahmad, F., & Darmawan. (2010). The properties of humic acids extracted from four sources of organic matters and their ability to bind Fe2+ at new established rice field. Journal of Tropical Soils, 15(3), 237–244. Retrieved from website

Herviyanti, Prasetyo, T. B., Ahmad, F., & Saidi, A. (2012). Humic acid and water management to decrease ferro (Fe2+) solution and increase productivity of established new rice field. Journal of Tropical Soils, 17(1), 9-17. Retrieved from website

Huang, P. M., & Schnitzer, M. (Eds.). (1986). Interactions of soil minerals with natural organics and microbes. SSSA Special Publication Number 17. Madison, WI, USA: Soil Science Society of America. Retrieved from website

Parvan, K., Rahmandad, H., & Haghani, A. (2013). Empirical study of design-construction feedbacks in building construction projects. In The 31st International Conference of the System Dynamics Society (p. 1-32). Cambridge, Massachusetts, USA. Retrieved from pdf

Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 46(12), 3769–3780. crossref

Rezki, D., Ahmad, F., & Gusnidar. (2007). Ekstraksi bahan humat dari batubara (Subbituminus) dengan menggunakan 10 jenis pelarut. Jurnal Solum, 4(2), 73–80. crossref

Rodrigues, A. F., Novotny, E. H., Knicker, H., & de Oliveira, R. R. (2019). Humic acid composition and soil fertility of soils near an ancient charcoal kiln: are they similar to Terra Preta de Índios soils? Journal of Soils and Sediments, 19(3), 1374–1381. crossref

Sasmita, P., Satoto, Rahmini, Nurwulan, A., Handoko, D. D., Suprihanto, … Suharna. (2019). Deskripsi varietas unggul baru padi. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian.

Schon, N. L., Mackay, A. D., Gray, R. A., Dodd, M. B., & van Koten, C. (2015). Quantifying dung carbon incorporation by earthworms in pasture soils. European Journal of Soil Science, 66(2), 348–358. crossref

Selladurai, R., & Purakayastha, T. J. (2016). Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. Journal of Plant Nutrition, 39(7), 949–956. crossref

Senn, T. L., & Kingman, A. R. (1973). A review of humus and humic acids. Research Series No. 145. Clemson, South Carolina. Retrieved from pdf

Sparks, D. L. (2003). Environmental soil chemistry. Soils and Environment (2nd ed.). Academic Press. crossref

Stevenson, F. J. (1994). Humus chemistry: Genesis, composition and reactions. Technology & Engineering (2nd ed.). New Jersey, USA: John Wiley & Sons. Retrieved from website

Suntari, R., Retnowati, R., Soemarno, & Munir, M. (2015). Determination of urea-humic acid dosage of vertisols on the growth and production of rice. AGRIVITA Journal of Agricultural Science, 37(2), 185–192. crossref

Tan, K. H. (2011). Principles of soil chemistry (4th ed.). Boca Raton, FL: CRC Press. Retrieved from website




DOI: http://doi.org/10.17503/agrivita.v41i3.1106

Copyright (c) 2019 UNIVERSITAS BRAWIJAYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.