Preliminary Test of Agri-Environmental Scheme Implementation in Farmland in Northern Slope of Mount Slamet

Imam Widhiono, Eming Sudiana

Abstract


An Agri-Environmental Scheme (AES) was designed to enhance flower availability in crops using local wild plants. The goals of this research were to determine the impact of four wild plants on three cash corps, focusing on the diversity and abundance of insect pollinators, and to test the efficacy of this scheme using farmland on the northern slope of Mount Slamet. This research was done using a split block design, with the three cash crops as blocks (strawberry [Fragaria x ananassa Duchesne], chili pepper [Capsicum spp.], and tomatoes [Solanum lycopersicum L.]) and four wild plant species as treatments (Cleome rutidosperma, Borreria laevicaulis, Euphorbia heterophylla, and Tridax procumbens) at different precentages (0, 5, 10, and 15 %) of cash crop plant density. The results show that growing wild plants with cash crops enhanced the abundance and diversity of insect pollinators. Moreover, the addition of wild plant species to the crops at four densities had significantly different effects on insect pollinators in terms of abundance and diversity. The combination of 15 % C. rutidospermae and tomatoes had the largest population of insect pollinators. From the experiments it concluded that an AES could be implemented in farmland on the northern slope of Mount Slamet.

Keywords


abundant; Agri-Environmental Scheme; diversity; insect pollinators; wild plant

Full Text:

PDF

References


Anbalagan, V., Paulraj, M. G., & Ignacimuthu, S. (2015). Diversity and abundance of Hymenoptera families in vegetable crops in north-eastern District of Tamil Nadu, India. International Journal of Fauna and Biological Studies, 2(3), 100–104. Retrieved from http://www.faunajournal.com/vol2Issue3/pdf/2-3-10.1.pdf PDF

Bartomeus, I., Potts, S. G., Steffan-Dewenter, I., Vaissière, B. E., Woyciechowski, M., Krewenka, K. M., … Bommarco, R. (2014). Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2, e328. crossref

Batáry, P., Báldi, A., Sárospataki, M., Kohler, F., Verhulst, J., Knop, E., … Kleijn, D. (2010). Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems & Environment, 136(1–2), 35–39. http://doi.org/10.1016/j.agee.2009.11.004 crossref

Blaauw, B. R., & Isaacs, R. (2014). Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. Journal of Applied Ecology, 51(4), 890–898. crossref

Blüthgen, N., & Klein, A. M. (2011). Functional complementarity and specialisation: The role of biodiversity in plant-pollinator interactions. Basic and Applied Ecology, 12(4), 282–291. crossref

Buri, P., Humbert, J. Y., & Arlettaz, R. (2014). Promoting pollinating insects in intensive agricultural matrices: Field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees. PLoS ONE, 9(1), e85635. crossref

Carvell, C., Meek, W. R., Pywell, R. F., Goulson, D., & Nowakowski, M. (2007). Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. Journal of Applied Ecology, 44(1), 29–40. crossref

Decourtye, A., Mader, E., & Desneux, N. (2010). Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie, 41(3), 264–277. crossref

Dicks, L. V., Showler, D. A., & Sutherland, W. J. (2010). Bee conservation: Evidence for the effects of interventions (Synopses of conservation evidence, vol. 1). Exeter, UK: Pelagic Publishing.

Dornhaus, A., & Chittka, L. (2004). Why do honey bees dance? Behavioral Ecology and Sociobiology, 55(4), 395–401. crossref

Dyer, F. C. (2002). The biology of the dance language. Annual Review of Entomology, 47(1), 917–949. crossref

Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W., & Tscharntke, T. (2008). How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos, 117(12), 1808–1815. crossref

Ebeling, A., Klein, A. M., & Tscharntke, T. (2011). Plant-flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic and Applied Ecology, 12(4), 300–309. crossref

Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810–821. crossref

Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology, 94(2), 295–304. crossref

Hodgson, J. G., Grime, J. P., Wilson, P. J., Thompson, K., & Band, S. R. (2005). The impacts of agricultural change (1963-2003) on the grassland flora of Central England: Processes and prospects. Basic and Applied Ecology, 6(2), 107–118. crossref

Holzschuh, A., Dormann, C. F., Tscharntke, T., & Steffan-Dewenter, I. (2011). Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of The Royal Society B - Biological Sciences, 278(1723), 3444–3451. crossref

Iler, A. M., & Goodell, K. (2014). Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant. Journal of Pollination Ecology, 13(18), 174–183. Retrieved from http://www.pollinationecology.org/index.php?journal=jpe&page=article&op=view&path[]=283&path[]=95 website

Jauker, F., & Wolters, V. (2008). Hoverflies are efficient pollinators of oilseed rape. Oecologia, 156(4), 819–823. crossref

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Cremen, C. & Tscharnake T. (2007). Importance of polinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274(1608), 303-314. crossref

Martin, P., & Bateson, P. (1993). Measuring behaviour: An introductory guide (2nd ed.). Cambridge, UK: Cambridge University Press.

Nicholls, C. I., & Altieri, M. A. (2013). Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development, 33(2), 257-274. crossref

Polidori, C., Rubichi, A., Barbieri, V., Trombino, L., & Donegana, M. (2010). Floral resources and nesting requirements of the ground-nesting social bee, Lasioglossum malachurum (Hymenoptera: Halictidae), in a Mediterranean semiagricultural landscape. Psyche, 2010, 1–11. crossref

Raw, A. (2000). Foraging behaviour of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Annals of Botany, 85(4), 487–492. crossref

Rollin, O., Bretagnolle, V., Decourtye, A., Aptel, J., Michel, N., Vaissière, B. E., & Henry, M. (2013). Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agriculture, Ecosystems and Environment, 179, 78–76. crossref

Roth, T., Amrhein, V., Peter, B., & Weber, D. (2008). A Swiss agri-environment scheme effectively enhances species richness for some taxa over time. Agriculture, Ecosystems and Environment, 125(1–4), 167–172. crossref

Sadeghi, H. (2008). Abundance of adult hoverflies (Diptera: Syrphidae) on different flowering plants. Caspian Journal of Environmental Sciences, 6(1), 47–51. Retrieved from http://profdoc.um.ac.ir/articles/a/204524.pdf PDF

Scheper, J., Holzschuh, A., Kuussaari, M., Potts, S. G., Rundlöf, M., Smith, H. G., & Kleijn, D. (2013). Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss - a meta-analysis. Ecology Letters, 16(7), 912–920. crossref

Silva-Neto, C. M., Lima, F. G., Gonçalves, B. B., Bergamini, L. L., Bergamini, B. A. R., Silva-Elias, M. A., & Villaron-Franceschinelli, E. (2013). Native bees pollinate tomato flowers and increase fruit production. Journal of Pollination Ecology, 11(6), 41–45. Retrieved from http://www.pollinationecology.org/index.php?journal=jpe&page=article&op=view&path%5B%5D=251&path%5B%5D=71 website

Steffan-Dewenter, I., Potts, S. G. & Packer, L. (2005). Pollinator diversivity and crop pollination service are at risk. TRENDS in Ecology and Evolution. 20, 651-652. crossref

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., … Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53–59. crossref

Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecology Letters, 8(8), 857–874. crossref

Widhiono, I., & Sudiana, E. (2015a). Keragaman serangga penyerbuk dan hubunganya dengan warna bunga pada tanaman pertanian di lereng utara Gunung Slamet, Jawa Tengah [Diversity of insect pollinators and its relationship with flowers colors on agricultural crops in the northern slopes of Mount Slamet, Central Java]. Biospecies, 8(2), 43–50. Retrieved from http://online-journal.unja.ac.id/index.php/biospecies/article/view/2502/1813 website

Widhiono, I., & Sudiana, E. (2015b). Peran tumbuhan liar dalam konservasi keragaman serangga penyerbuk Ordo Hymenoptera [The role of wild plants in the conservation of pollinating insects of the Order Hymenoptera]. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(7), 1586–1590. crossref




DOI: http://doi.org/10.17503/agrivita.v39i1.871

Copyright (c) 2016 AGRIVITA, Journal of Agricultural Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.