Yudhistira Nugraha, Sintho Wahyuning Ardie, Munif Ghulamahdi, Suwarno Suwarno, Hajrial Aswidinnoor


Iron toxicity is major constraint of rice production in irrigated-lowland of tropical regions. Improvement the tolerance of the rice cultivar to iron toxicity needs the information some genetics parameters of the selected characters. Here we study the estimation of gene action and heritability of the grain yield and its component under iron-toxic stress and control field conditions in rice. The iron-toxic tolerant rice cultivars, Pokkali and Mahsuri were crossed with the sensitive cultivar, Inpara5 to develop six generation populations. The breeding materials were grown in the iron toxicity site and control in Taman Bogo, Lampung Indonesia. The sensitive parent and BC1P1 had lower stress tolerance index (STI) compared to the tolerant parent F1, F2 and BC1P2.  Most of the characters including the grain yield were fitted the best model in five parameters which were more prominent with interactive epistasis of duplicate and complementary gene action.  The heritability’s under control were more higher compared to iron toxicity stress condition. Delaying selection to later generations and combining with the shuttle breeding between stressed and controlled environments were the best strategy for improving the grain yield and tolerance to iron toxicity in rice.


epistasis; generation means analysis; Joint scale test; leaf bronzing stress; tolerance index

Full Text:



Audebert, A., & Fofana, M. (2009). Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science, 195(1), 66–76. crossref

Audebert, A., & Sahrawat, K. L. (2000). Me-chanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition, 23(11-12), 1877–1885. crossref

Becker, M., & Asch, F. (2005). Iron toxicity in rice - Conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168(4), 558-573. crossref

Cao, G., Zhu, J., He, C., Gao, Y., Yan, J., & Wu, P. (2001). Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theoretical and Applied Genetics, 103(1), 153–160. crossref

Cavalli, L. L. (1952). An analysis of linkage in quantitative inheritance. In E. C. R. Reeve & C. H. Waddington (Eds.), Quantitative inheritance (pp. 135-144). London: HMSO.

Divya, B., Biswas, A., Robin, S., Rabindran, R., & Joel, A. J. (2014). Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). Journal of Genetics, 93(2), 415–424. crossref

Dobermann, A. & Fairhurst, T. H. (2000). Rice: Nutrient disorders & nutrient management. Singapore: Potash & Phosphate Institute.

Dufey, I., Draye, X., Lutts, S., Lorieux, M., Martinez, C. & Bertin, P. (2015). Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica, 204(3), 609-625. crossref

Dufey, I., Hakizimana, P., Draye, X., Lutts, S., & Bertin, P. (2009). QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica, 167(2), 143–160. crossref

Engel, K., Asch, F., & Becker, M. (2012). Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. Journal of Plant Nutrition and Soil Science, 175(6), 871–881. crossref

Fageria, N. K., Santos, A. B., Barbosa Filho, M. P., & Guimarães, C. M. (2008). Iron toxicity in lowland rice. Journal of Plant Nutrition, 31(9), 1676-1697. crossref

Fehr, W. R. (1987). Principles of cultivar development, vol. 1: Theory and technique. New York: McGraw-Hill.

Gregorio, G. B., Senadhira, D., Mendoza, R. D., Manigbas, N. L., Roxas, J. P., & Guerta, C. Q. (2002). Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research, 76(2-3), 91–101. crossref

IRRI. (1996). Standard evaluation system for rice (4th ed.). Manila: International Rice Research Institute.

Ismunadji, M. (1990). Alleviating iron toxicity in lowland rice. Indonesian Agricultural Research and Development Journal, 12(4), 67-72. Retrieved from

Kearsey, M. J. & Pooni, H. S. (1996). The genetical analysis of quantitative traits. London: Chapman & Hall.

Kuswantoro, H., Basuki, N., & Arsyad, D. M. (2011). Inheritance of soybean pod number trait on acid soil. AGRIVITA Journal of Agricultural Science, 33(2), 119–126. Retrieved from

Li, Z. K., Luo, L. J., Mei, H. W., Wang, D. L., Shu, Q. Y., Tabien, R., … Paterson, A. H. (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 158(4), 1737–1753. crossref

Mather, K. & Jinks, J. L. (1982). Biometrical genetics: The study of continuous variation (3rd ed.). London: Chapman and Hall.

Matiello, R. R., Brunelli, K. R., Lopes, M. T. G., Morello, R. M. S. C., Silva, H. P. da, & Camargo, L. E. A. (2012). Inheritance of resistance to anthracnose stalk rot (Colletotrichum graminicola) in tropical maize inbred lines. Crop Breeding and Applied Biotechnology, 12(3), 179–184. crossref

Mohammadi, R., Mendioro, M. S., Diaz, G. Q., Gregorio, G. B., & Singh, R. K. (2014). Genetic analysis of salt tolerance at seedling and reproductive stages in rice (Oryza sativa). Plant Breeding, 133(5), 548–559. crossref

Moroni, J. S., Briggs, K. G., Blenis, P. V. & Taylor, G. J. (2013). Generation mean analysis of spring wheat (Triticum aestivum L.) seedlings tolerant to high levels of manganese. Euphytica, 189(1), 89-100. crossref

Muhrizal, S., Shamshuddin, J., Fauziah, I., & Husni, M. A. H. (2006). Changes in iron-poor acid sulfate soil upon submergence. Geoderma, 131(1-2), 110–122. crossref

Onaga, G., Egdane, J., Edema, R., & Abdelbagi, I. (2013). Morphological and genetic diversity analysis of rice accessions (Oryza sativa L.) differing in iron toxicity tolerance. Journal Crop Science Biotechnology, 16(1), 53–62. crossref

Pereira, E. G., Oliva, M. A., Rosado-Souza, L., Mendes, G. C., Colares, D. S., Stopato, C. H., & Almeida, A. M. (2013). Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Science, 201-202(1), 81–92. crossref

Prasetyo, B. H., & Suriadikarta, D. A. (2006). Karakteristik, potensi, dan teknologi pengelolaan tanah ultisol untuk pengembangan pertanian lahan kering di Indonesia [Characteristics, potential, and management of ultisols for agricultural upland development in Indonesia]. Jurnal Litbang Pertanian, 25(2), 39–47. Retrieved from

Reynolds, M. P., Trethowan, R. M., van Ginkel, M. & Rajaram, S. (2001). Application of physiology in wheat breeding. In M. P. Reynolds, J. I. Ortiz-Monasterio & A. McNab (Eds.), Application of Physiology in Wheat Breeding (pp. 2-10). Mexico: CIMMYT.

Said, A. A. (2014). Generation mean analysis in wheat (Triticum aestivum L.) under drought stress conditions. Annals of Agricultural Sciences, 59(2), 177–184. crossref

Samineni, S., Gaur, P. M., Colmer, T., Krishnamurthy, L., Vadez, V., & Siddique, K. (2011). Estimation of genetic components of variation for salt tolerance in chickpea using the generation mean analysis. Euphytica, 182, 73-86. crossref

SAS Institute. (2004). SAS/STAT 9.1 user’s guide. Retrieved from

Septiningsih, E. M., Hidayatun, N., Sanchez, D. L., Nugraha, Y., Carandang, J., Pamplona, A. M., … Mackill, D. J. (2014). Accelerating the development of new submergence tolerant rice varieties: The case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica, 202(2), 259–268. crossref

Shashikumar, K. T., Pitchaimuthu, M., & Rawal, R. D. (2010). Generation mean analysis of resistance to downy mildew in adult muskmelon plants. Euphytica, 173(1), 121–127. crossref

Shimizu, A. (2009). QTL analysis of genetic tolerance to iron toxicity in rice (Oryza Sativa L.) by quantification of bronzing score. Journal of New Seeds, 10(3), 171-179. crossref

Statistics Indonesia. (2015). Harvested area, yield rate and production of food crops by province (dynamic) [Data file]. Retrieved from

Stein, R. J., Lopes, S. I. G., & Fett, J. P. (2014). Iron toxicity in field-cultivated rice: Contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology, 26(2), 135–146. crossref

Suhartini, T., & Makarim, M. A. (2009). Teknik seleksi genotipe padi toleran keracunan besi [Selection technique for rice tolerant to iron toxicity]. Jurnal Penelitian Pertanian Tanaman Pangan, 28(3), 125–130. Retrieved from

Utami, D. W., & Hanarida, I. (2014). Evaluasi lapang dan identifikasi molekuler plasma nutfah padi terhadap keracunan Fe [Field evaluation and molecular identification of rice germplasms for Fe toxicity]. Jurnal AgroBiogen, 10(1), 9–17. Retrieved from Agrobiogen 10-1/Dwinita W Utami.pdf

Wade, L. J., Fukai, S., Samson, B. K., Ali, A., & Mazid, M. A. (1999). Rainfed lowland rice: Physical environment and cultivar requirements. Field Crops Research, 64(1-2), 3–12. crossref

Wan, J., Zhai, H., Wan, J., & Ikehashi, H. (2003). Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Genome Research, 131(2), 201–206. crossref

Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10), 752–764. crossref

Wu, L. B., Shhadi, M. Y., Gregorio, G., Matthus, E., Becker, M., & Frei, M. (2014). Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice (New York, N.Y.), 7(8), 1–12. crossref

Xing, Y. Z., Tan, Y. F., Hua, J. P., Sun, X. L., Xu, C. G., & Zhang, Q. (2002). Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics, 105(2-3), 248–257. crossref


Copyright (c) 2016 AGRIVITA, Journal of Agricultural Science

License URL: