Effects of Sugar Type and Concentration on Batu 55 Mandarin (Citrus reticulata Blanco.) Somatic Embryo Maturation

Wahyu Widoretno, Serafinah Indriyani, Chairani Martasari, Rikza Hakin


When obtaining plantlets, embryo maturation and simultaneous germination are important steps in plant micropropagation via somatic embryogenesis. Several studies have shown that the use of carbohydrates as a carbon source plays a significant role in inducing somatic embryo development in certain plant species. This study aimed to establish a somatic embryo maturation protocol for Batu 55 Mandarin (C. reticulata Blanco.) by examining the effect of various types of sugar and concentrations. The results showed that the type and concentration of sugar added to the medium affect the somatic embryo maturation of Batu 55 Mandarin. Galactose and maltose enhance somatic embryo maturation more effectively than does sorbitol. The combination of galactose or maltose with sorbitol was able to improve somatic embryo maturation more effectively than galactose or maltose alone. The combination of galactose and sorbitol enhanced the maturation of somatic embryos more effectively than did change the concentrations of maltose or sorbitol. It can be concluded that sugar type and concentration had effects on citrus somatic embryo development. The combination of sorbitol (36.5 mM) with galactose 73 mM was able to augment citrus somatic embryo maturation more effectively than the other concentrations applied.


Citrus reticulate; galactose; maturation; somatic embryo; sorbitol

Full Text:



Blanc, G., Lardet, L., Martin, A., Jacob, J. L., & Carron, M. P. (2002). Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). Journal of Experimental Botany, 53(373), 1453–1462. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12021293 website

Blanc, G., Michaux-Ferrière, N., Teisson, C., Lardet, L., & Carron, M. P. (1999). Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell, Tissue and Organ Culture, 59, 103. crossref

Bozhkov, P. V, & von Arnold, S. (1998). Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiologia Plantarum, 104(2), 211–224. crossref

Canhoto, J. M., & Cruz, G. S. (1994). Improvement of somatic embryogenesis in Feijoa sellowiana berg (Myrtaceae) by manipulation of culture media composition. In Vitro Cellular & Developmental Biology – Plant, 30(1), 21–25. crossref

Choudhury, H., Kumaria, S., & Tandon, P. (2008). Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Current Science, 95(10), 1433-1438. Retrieved from https://www.academia.edu/7594471/Induction_and_maturation_of_somatic_embryos_from_intact_megagametophyte_explants_in_Khasi_pine_Pinus_kesiya_Royle_ex._Gord website

Corredoira, E., Ballester, A., & Vieitez, A. M. (2003). Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Annals of Botany, 92(1), 129–136. crossref

Finkelstein, R. R., & Gibson, S. I., (2001). ABA and sugar interactions regulating development: Cross-talk or voices in a crowd?. Current Opinion in Plant Biology, 5(1), 26-32. crossref

Garin, E., Bernier-Cardou, M., Isabel, N., Klimaszewska, K., & Plourde, A. (2000). Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell, Tissue and Organ Culture, 62(1), 27–37. crossref

Iraqi, D., & Tremblay, F. M. (2001). The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca) somatic embryos. Physiologia Plantarum, 111(3), 381–388. crossref

Karami, O., Deljou, A., & Pour, A. M. (2008). Direct somatic embryogenesis and plant regeneration in carnation (Dianthus caryophyllus L.). Journal of Water and Soil Science, 12(43), 11-16. Retrieved from http://jstnar.iut.ac.ir/browse.php?a_id=817&sid=1&slc_lang=en website

Koornneef, M., & Karssen, C. M. (1994). Seed dormancy and germination. In E. M. Meyerowitz & C. R. Somerville (Eds.), Arabidopsis (pp. 313-334). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Körbes, A. P., & Droste, A. (2005). Carbon sources and polyethylene glycol on soybean somatic embryo conversion. Pesquisa Agropecuária Brasileira, 40(3), 211-216. crossref

Leo, P., & Shee, J. (2003). Sugar and hormone connections. Trends in Plant Science, 8(3), 110-116. crossref

Li, X. Y., Huang, F. H., Murphy, J. B., & Gbur, E. E. (1998). Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.). In Vitro Cellular & Developmental Biology – Plant, 34(1), 22–26. crossref

Lipavska, H., Svobodova, H., Albrechtova, J., Kumstyrova, L., Vagner, M., & Vondrakova, Z. (2000). Carbohydrate status during somatic embryo maturation in Norway spruce. In vitro Cellular and Development Biology – Plant, 36(4), 260-267. crossref

Misra, S., Attree, S. M., Leal, I., & Fowke, L. C. (1993). Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Annals of Botany, 71, 11-22. Retrieved from http://aob.oxfordjournals.org/content/71/1/11.full.pdf PDF

Murashige, T., & Tucker, D. H. (1969). Growth factor requirements of Citrus tissue culture. In H. D. Chapman (Ed.), Proceedings 1st International Citrus Symposium Vol. 3 (pp. 1155-1161), Universitas California. Illinois, USA: Riverside Publication. Retrieved from https://www.scienceopen.com/document?vid=3ce09f06-4f75-4cb1-9fc4-676cb48a0de2 website

Nasim, S. A., Mujib, A., Kapoor, R., Fatima, S., Aslam, J., & Mahmooduzzafar. (2010). Somatic embryogenesis in Allium sativum L. (cv. Yamuna Safed 3): Improving embryo maturation and germination with PGRs and carbohydrates. Anales de Biología, 32, 1-9. Retrieved from https://www.um.es/analesdebiologia/numeros/32/PDF/32_2010_01.pdf PDF

Noorgard, J. V. (1997). Somatic embryo maturation and plant regeneration in Abies nordmanniana LK. Plant Science, 124, 211-221.

Pua, E. C., & Chong, C. (1984). Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta No. 5. Canadian Journal of Botany, 62(7), 1545-1549. crossref

Ramarosandratana, A., Harvengt, L., Bouvet, A., Calvayrac, R., & Pâques, M. (2001). Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Science, 160(3), 473-479. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168945200004106 website

Salaj, T., Matúšová, R., & Salaj, J. (2004). The effect of carbohydrates and polyethylene glycol on somatic embryo maturation on hybrid fir Abies alba x Abies numidica. Acta Biologica Cracoviensia (Series Botanica), 46, 159-167. Retrieved from http://www2.ib.uj.edu.pl/abc/pdf/46/18_sala.pdf PDF

Salajova, T., Salaj, J., & Kormutak, A. (1999). Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Science, 145(1), 33–40. crossref

Slesak, H., & Przywara, L. (2003). The effect of carbohydrate source on the development of Brassica napus L. immature embryos in vitro. Acta Biologica Cracoviensia (Series Botanica), 45(2), 183-190. Retrieved from http://www2.ib.uj.edu.pl/abc/pdf/45_2/23_slesi.pdf PDF

Steiner, N., do Nascimento Vieira, F., MaldonadoI, S., & Guerra, M. P. (2005). Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Brazilian Archives of Biology and Technology, 48(6), 895-903. crossref

Strickland, S. G., Nichol, J. W., McCall, C. M., & Stuart, D. A. (1987). Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Science, 48(2), 113-121. crossref

Tholakalabavi, A., Zwiazek, J. J., & Thorpe, T. A. (1994). Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoides var. Occidentalis) in relation to anthocyanin accumulation. In Vitro Cellular & Developmental Biology – Plant, 30(3), 164–170. crossref

Walker, D. R., & Parrott, W. A. (2001). Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell, Tissue and Organ Culture, 64(1), 55–62. crossref

Weber, H., Borisjuk, L., & Wobus, U. (1997). Sugar import and metabolism during seed development. Trends in Plant Science, 2(5), 169-174. crossref

Yadegari, R., & Goldberg, R. B. (1997). Embryogenesis in Dicotyledonous plants. In B. A. Larkins, & I. K. Vasil (Eds.), Cellular and molecular biology of plant seed development (pp. 3-52). Netherlands: Springer. crossref

Zimmermann, M. H., & Ziegler, H. (1975). List of sugars and sugar alcohols in sieve-tube exudates. In M. H. Zimmermann, & J. A. Milburn (Eds.), Encyclopedia of Plant Physiology New Series Vol. 1: Transport in Plants I (pp. 480-503). Berlin, DE: Springer-Verlag.

DOI: http://doi.org/10.17503/agrivita.v39i1.714

Copyright (c) 2016

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.