Improvement of Tomato (Solanum lycopersicum L.) Production Using Albitbr Bio-Stimulant Under Open Field
Abstract
Keywords
Full Text:
PDFReferences
Abdallah, S. B., Elfkih, S., Suárez-Rey, E. M., Parra-López, C., & Romero-Gámez, M. (2021). Evaluation of the environmental sustainability in the olive growing systems in Tunisia. Journal of Cleaner Production, 282, 124526. https://doi.org/10.1016/j.jclepro.2020.124526
Ali, K. A., Noraldeen, S. S., & Yaseen, A. A. (2021). An evaluation study for chlorophyll estimation techniques. Sarhad Journal of Agriculture, 37(4), 1458-1465. https://dx.doi.org/10.17582/journal.sja/2021/37.4.1458.1465
Aswin, C., Vakeswaran, V., & Geetha, R. (2019). Effect of seed priming on seed quality enhancement in high and low vigour seed lots of tomato (Lycopersicum esculentum) var. PKM 1. International Journal of Chemical Studies, 7(3), 1645-1648. https://www.chemijournal.com/archives/2019/vol7issue3/PartAA/7-2-400-651.pdf
Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G., & van der Linden, G. (2018). Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. The plant journal, 93, 781-793. https://doi.org/10.1111/tpj.13800
Baldi, L., Trentinaglia, M. T., Mancuso, T., & Peri, M. (2021). Attitude toward environmental protection and toward nature: How do they shape consumer behaviour for a sustainable tomato?. Food Quality and Preference, 90, 104175. https://doi.org/10.1016/j.foodqual.2021.104175
Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11(8), 1096. https://doi.org/10.3390/biom11081096
Baul, T. K., & McDonald, M. (2015). Integration of Indigenous knowledge in addressing climate change. Indian journal of traditional knowledge, 1(1), 20-27. https://nopr.niscpr.res.in/bitstream/123456789/32021/1/IJTK%201(1)%2020-27.pdf
Bhattacharyya, C., Roy, R., Tribedi, P., Ghosh, A., & Ghosh, A. (2020). Biofertilizers as substitute to commercial agrochemicals. In Agrochemicals Detection, Treatment and Remediation (pp. 263–290). Elsevier. https://doi.org/10.1016/B978-0-08-103017-2.00011-8
Bhupenchandra, I., Chongtham, S. K., Devi, E. L., R., R., Choudhary, A. K., Salam, M. D., Sahoo, M. R., Bhutia, T. L., Devi, S. H., Thounaojam, A. S., Behera, C., M. N., Harish., Kumar, A., Dasgupta, M., Devi, Y. P., Singh, D., Bhagowati, S., Devi, C. P., Singh, H. R., & Khaba, C. I. (2022). Role of biostimulants in mitigating the effects of climate change on crop performance. Frontiers in Plant Science, 13, 967665. https://doi.org/10.3389/fpls.2022.967665
Bilinska, O., Kulka, V., Samets, N., & Golod, R. (2021). The influence of the use of the drug Albit on the formation of the seed productivity of the pre-basic material of potatoes. Ukrainian Black Sea Region Agrarian Science, 2(25), 71-79. https://bsagriculture.com.ua/en/journals/tom-25-2-2021/vpliv-zastosuvannya-preparatu-albit-na-formuvannya-nasinnyevoyi-produktivnosti-dobazovogo-materialu-kartopli
Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. Journal of Natural Sciences Research, 8(5), 2225-0921. https://www.iiste.org/Journals/index.php/JNSR/article/download/41632/42854
Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In M. L. Larramendy & S. Soloneski (Eds.), Soil Contamination—Threats and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.94593
Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: A review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649
Calvo, P., Nelson, L., Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8
Cheng, H. M., Koutsidis, G., Lodge, J. K., Ashor, A. W., Siervo, M., & Lara, J. (2019). Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Critical Reviews in Food Science and Nutrition, 59(1), 141–158. https://doi.org/10.1080/10408398.2017.1362630
Cooper, J., Reed, E. Y., Hörtenhuber, S., Lindenthal, T., Løes, A.-K., Mäder, P., Magid, J., Oberson, A., Kolbe, H., & Möller, K. (2018). Phosphorus availability on many organically managed farms in Europe. Nutrient Cycling in Agroecosystems, 110, 227–239. https://doi.org/10.1007/s10705-017-9894-2
DePascale, S., Rouphael, Y., & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277–285. https://doi.org/10.17660/eJHS.2017/82.6.2
Fernandes, Â., Chaski, C., Pereira, C., Kostić, M., Rouphael, Y., Soković, M., Barros, L., & Petropoulos, S. A. (2022). Water stress alleviation effects of biostimulants on greenhouse-grown tomato fruit. Horticulturae, 8(7), 645. https://doi.org/10.3390/horticulturae8070645
Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., & Savvas, D. (2021). Impact of legumes as a pre-crop on nitrogen nutrition and yield in organic greenhouse tomato. Plants, 10(3), 468. https://doi.org/10.3390/plants10030468
Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., Antoniou, C. (2022). Application of Biostimulants in Tomato Plants (Solanum lycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. PLANTS, 11(22), 3082. https://doi.org/10.3390/plants11223082
Islam, Md. M., Jahan, K., Sen, A., Urmi, T. A., Haque, M. M., Ali, H. M., Siddiqui, M. H., & Murata, Y. (2023). Exogenous application of calcium ameliorates salinity stress tolerance of tomato (Solanum lycopersicum L.) and enhances fruit quality. Antioxidants, 12(3), 558. https://doi.org/10.3390/antiox12030558
Jote, C. A. (2023). The impacts of using inorganic chemical fertilizers on the environment and human health. Organic and Medicinal Chemistry International Journal, 13(3), 555864. https://juniperpublishers.com/omcij/pdf/OMCIJ.MS.ID.555864.pdf
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a biostimulant for a potentially enhanced quality of soilless organically grown tomato plants. Second cycle, A2E. Alnarp: SLU, Dept. of Plant Breeding (from 130101). https://stud.epsilon.slu.se/18883/
Kim, M.-J., Radhakrishnan, R., Kang, S.-M., You, Y.-H., Jeong, E.-J., Kim, J.-G., & Lee, I.-J. (2017). Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiology and Molecular Biology of Plants, 23(3), 571–580. https://doi.org/10.1007/s12298-017-0449-4
Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wu, C., Rao, Z., Du, L., Zhao, R., Yi, M., Wan, Q., & Zhou, Y. (2021). Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chemistry, 343, 128396. https://doi.org/10.1016/j.foodchem.2020.128396
Liu, J., Hu, T., Feng, P., Yao, D., Gao, F., & Hong, X. (2021). Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agricultural Water Management, 250, 106831. https://doi.org/10.1016/j.agwat.2021.106831
Luziatelli, F., Ficca, A. G., Colla, G., Baldassarre Švecová, E., & Ruzzi, M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Frontiers in Plant Science, 10, 60. https://doi.org/10.3389/fpls.2019.00060
Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical transactions of the Royal Society B, 375, 20190104. https://doi.org/10.1098/rstb.2019.0104
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
Mallick, S., Karak, C., Roy, B., Chakraborty, B., Das, P., & Bhutia, P. (2024). Effects of bio stimulants on growth, yield and quality of tomato. International Journal of Economic Plants, 11(3), 347-352. https://doi.org/10.23910/2/2024.5493b
Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—Drought, salinity, hypoxia, and lodging. Horticulturae, 3(4), 52. https://doi.org/10.3390/horticulturae3040052
Meddich, A., Ait El Mokhtar, M., Bourzik, W., Mitsui, T., Baslam, M., & Hafidi, M. (2018). Optimizing growth and tolerance of date palm (Phoenix dactylifera L.) to drought, salinity, and vascular fusarium-induced wilt (Fusarium oxysporum) by application of arbuscular mycorrhizal fungi(Amf). In: Giri, B., Prasad, R., Varma, A. (Eds.), Root Biology (Vol. 52, pp. 239–258). Springer International Publishing. https://doi.org/10.1007/978-3-319-75910-4_9
Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., Bamouh, A., & Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of Moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11(7), 1373. https://doi.org/10.3390/agronomy11071373
Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K., & Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites, 10(12), 505. https://doi.org/10.3390/metabo10120505
Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2021). Modes of action of biostimulants in plants. In Biostimulants for Crops from Seed Germination to Plant Development (pp. 445–459). Elsevier. https://doi.org/10.1016/B978-0-12-823048-0.00015-0
Park, H.-A., Hayden, M. M., Bannerman, S., Jansen, J., & Crowe-White, K. M. (2020). Anti-apoptotic effects of carotenoids in neurodegeneration. Molecules 2020, 25(15), 3453. https://doi.org/10.3390/molecules25153453
Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Miras Moreno, M. B., Reynaud, H., Canaguier, R., Trtílek, M., Panzarová, K., & Colla, G. (2019). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Frontiers of Plant Sciences, 10, 1–18. https://doi.org/10.3389/fpls.2019.00493
Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—a comprehensive review. Critical Reviews in Food Science and Nutrition, 55(7), 919–929. https://doi.org/10.1080/10408398.2012.657809
Quintarelli, V., Borgatti, D., Baretta, M., Stazi, S.R., Allevato, E., Pancaldi, S., Baldisserotto, C., Mancinelli, R., Tedeschi, P., Radicetti, E. and Ben Hassine, M. (2025). Microbial biofertilizers and algae‐based biostimulant affect fruit yield characteristics of organic processing tomato. Journal of the Science of Food and Agriculture, 105(1), 530-539. https://scijournals.onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.13851
Sadigov, R. (2022). Rapid growth of the world population and its socioeconomic results. The Scientific World Journal, 2022(1), 8110229.
Sani, M. N. H., Islam, M. N., Uddain, J., Chowdhury, M. S. N., & Subramaniam, S. (2020). Synergistic effect of microbial and nonmicrobial biostimulants on growth, yield, and nutritional quality of organic tomato. Crop science, 60(4), 2102-2114. https://doi.org/10.1002/csc2.20176
Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European journal of soil biology, 57, 1–8. https://doi.org/10.1016/j.ejsobi.2013.03.006
Subramaniyan, L., Veerasamy, R., Prabhakaran, J., Selvaraj, A., Algarswamy, S., Karuppasami, K. M., Thangavel, K., & Nalliappan, S. (2023). Biostimulation effects of seaweed extract (Ascophyllum nodosum) on phytomorpho-physiological, yield, and quality traits of tomato (Solanum lycopersicum L.). Horticulturae, 9(3), 348. https://doi.org/10.3390/horticulturae9030348
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. https://doi.org/10.1186/s40538-017-0089-5
Weisser, M., Mattner, S. W., Southam-Rogers, L., Hepworth, G., & Arioli, T. (2024). Effect of a fortified biostimulant extract on tomato plant productivity, physiology, and growing media properties. Plants, 13(1), 4. https://doi.org/10.3390/plants13010004
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in plant science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
DOI: http://doi.org/10.17503/agrivita.v47i2.4755
Copyright (c) 2025 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.