Improvement of Tomato (Solanum lycopersicum L.) Production Using Albitbr Bio-Stimulant Under Open Field

Bahran Knfe Yakob, Gins Murat Sabirovich

Abstract


Climate change, coupled with the indiscriminate application of inorganic chemicals, is causing tremendous challenges in agricultural production systems. The experiment aims to improve the production potential of tomato fruits and it was conducted in Vniiccok (Russia) during summer 2024, using Albitbr bio-stimulant in eight different doses (0 l/ha, 0.1 l/ha, 0.5 l/ha, 1 l/ha, 2.5 l/ha, 5 l/ha, 10 l/ha and 50 l/ha) on four cultivars of tomato (Malets, Revansh, Telecman and Fenaric). A randomized block design was followed, and each treatment was replicated three times. The data was analyzed using ANOVA at a 5% level of significance. Results of the experiment indicated that Malets cultivar led to the production of the highest values of all the growth and yield parameters; Maximum plant height (72.21 cm), number of leaves (27.08), number of branches (6.06), number of fruits (48.16) and marketable yield (81.93 t/ha). Significantly, the highest values of maximum plant height (66.25 cm), number of fruits (36.71), and marketable yield (76.92 t/ha) were obtained from 2.5 l/ha of Albitbr. Thus, a 2.5 l/ha dose was found to be the best dose for upgrading the productivity of tomato fruits to the maximum level.

Keywords


Climate change; Cultivar; Experiment; Randomization; Significant

Full Text:

PDF

References


Abdallah, S. B., Elfkih, S., Suárez-Rey, E. M., Parra-López, C., & Romero-Gámez, M. (2021). Evaluation of the environmental sustainability in the olive growing systems in Tunisia. Journal of Cleaner Production, 282, 124526. https://doi.org/10.1016/j.jclepro.2020.124526

Ali, K. A., Noraldeen, S. S., & Yaseen, A. A. (2021). An evaluation study for chlorophyll estimation techniques. Sarhad Journal of Agriculture, 37(4), 1458-1465. https://dx.doi.org/10.17582/journal.sja/2021/37.4.1458.1465

Aswin, C., Vakeswaran, V., & Geetha, R. (2019). Effect of seed priming on seed quality enhancement in high and low vigour seed lots of tomato (Lycopersicum esculentum) var. PKM 1. International Journal of Chemical Studies, 7(3), 1645-1648. https://www.chemijournal.com/archives/2019/vol7issue3/PartAA/7-2-400-651.pdf

Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G., & van der Linden, G. (2018). Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. The plant journal, 93, 781-793. https://doi.org/10.1111/tpj.13800

Baldi, L., Trentinaglia, M. T., Mancuso, T., & Peri, M. (2021). Attitude toward environmental protection and toward nature: How do they shape consumer behaviour for a sustainable tomato?. Food Quality and Preference, 90, 104175. https://doi.org/10.1016/j.foodqual.2021.104175

Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11(8), 1096. https://doi.org/10.3390/biom11081096

Baul, T. K., & McDonald, M. (2015). Integration of Indigenous knowledge in addressing climate change. Indian journal of traditional knowledge, 1(1), 20-27. https://nopr.niscpr.res.in/bitstream/123456789/32021/1/IJTK%201(1)%2020-27.pdf

Bhattacharyya, C., Roy, R., Tribedi, P., Ghosh, A., & Ghosh, A. (2020). Biofertilizers as substitute to commercial agrochemicals. In Agrochemicals Detection, Treatment and Remediation (pp. 263–290). Elsevier. https://doi.org/10.1016/B978-0-08-103017-2.00011-8

Bhupenchandra, I., Chongtham, S. K., Devi, E. L., R., R., Choudhary, A. K., Salam, M. D., Sahoo, M. R., Bhutia, T. L., Devi, S. H., Thounaojam, A. S., Behera, C., M. N., Harish., Kumar, A., Dasgupta, M., Devi, Y. P., Singh, D., Bhagowati, S., Devi, C. P., Singh, H. R., & Khaba, C. I. (2022). Role of biostimulants in mitigating the effects of climate change on crop performance. Frontiers in Plant Science, 13, 967665. https://doi.org/10.3389/fpls.2022.967665

Bilinska, O., Kulka, V., Samets, N., & Golod, R. (2021). The influence of the use of the drug Albit on the formation of the seed productivity of the pre-basic material of potatoes. Ukrainian Black Sea Region Agrarian Science, 2(25), 71-79. https://bsagriculture.com.ua/en/journals/tom-25-2-2021/vpliv-zastosuvannya-preparatu-albit-na-formuvannya-nasinnyevoyi-produktivnosti-dobazovogo-materialu-kartopli

Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. Journal of Natural Sciences Research, 8(5), 2225-0921. https://www.iiste.org/Journals/index.php/JNSR/article/download/41632/42854

Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In M. L. Larramendy & S. Soloneski (Eds.), Soil Contamination—Threats and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.94593

Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: A review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649

Calvo, P., Nelson, L., Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8

Cheng, H. M., Koutsidis, G., Lodge, J. K., Ashor, A. W., Siervo, M., & Lara, J. (2019). Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Critical Reviews in Food Science and Nutrition, 59(1), 141–158. https://doi.org/10.1080/10408398.2017.1362630

Cooper, J., Reed, E. Y., Hörtenhuber, S., Lindenthal, T., Løes, A.-K., Mäder, P., Magid, J., Oberson, A., Kolbe, H., & Möller, K. (2018). Phosphorus availability on many organically managed farms in Europe. Nutrient Cycling in Agroecosystems, 110, 227–239. https://doi.org/10.1007/s10705-017-9894-2

DePascale, S., Rouphael, Y., & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277–285. https://doi.org/10.17660/eJHS.2017/82.6.2

Fernandes, Â., Chaski, C., Pereira, C., Kostić, M., Rouphael, Y., Soković, M., Barros, L., & Petropoulos, S. A. (2022). Water stress alleviation effects of biostimulants on greenhouse-grown tomato fruit. Horticulturae, 8(7), 645. https://doi.org/10.3390/horticulturae8070645

Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., & Savvas, D. (2021). Impact of legumes as a pre-crop on nitrogen nutrition and yield in organic greenhouse tomato. Plants, 10(3), 468. https://doi.org/10.3390/plants10030468

Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., Antoniou, C. (2022). Application of Biostimulants in Tomato Plants (Solanum lycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. PLANTS, 11(22), 3082. https://doi.org/10.3390/plants11223082

Islam, Md. M., Jahan, K., Sen, A., Urmi, T. A., Haque, M. M., Ali, H. M., Siddiqui, M. H., & Murata, Y. (2023). Exogenous application of calcium ameliorates salinity stress tolerance of tomato (Solanum lycopersicum L.) and enhances fruit quality. Antioxidants, 12(3), 558. https://doi.org/10.3390/antiox12030558

Jote, C. A. (2023). The impacts of using inorganic chemical fertilizers on the environment and human health. Organic and Medicinal Chemistry International Journal, 13(3), 555864. https://juniperpublishers.com/omcij/pdf/OMCIJ.MS.ID.555864.pdf

Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a biostimulant for a potentially enhanced quality of soilless organically grown tomato plants. Second cycle, A2E. Alnarp: SLU, Dept. of Plant Breeding (from 130101). https://stud.epsilon.slu.se/18883/

Kim, M.-J., Radhakrishnan, R., Kang, S.-M., You, Y.-H., Jeong, E.-J., Kim, J.-G., & Lee, I.-J. (2017). Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiology and Molecular Biology of Plants, 23(3), 571–580. https://doi.org/10.1007/s12298-017-0449-4

Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wu, C., Rao, Z., Du, L., Zhao, R., Yi, M., Wan, Q., & Zhou, Y. (2021). Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chemistry, 343, 128396. https://doi.org/10.1016/j.foodchem.2020.128396

Liu, J., Hu, T., Feng, P., Yao, D., Gao, F., & Hong, X. (2021). Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agricultural Water Management, 250, 106831. https://doi.org/10.1016/j.agwat.2021.106831

Luziatelli, F., Ficca, A. G., Colla, G., Baldassarre Švecová, E., & Ruzzi, M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Frontiers in Plant Science, 10, 60. https://doi.org/10.3389/fpls.2019.00060

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical transactions of the Royal Society B, 375, 20190104. https://doi.org/10.1098/rstb.2019.0104

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318

Mallick, S., Karak, C., Roy, B., Chakraborty, B., Das, P., & Bhutia, P. (2024). Effects of bio stimulants on growth, yield and quality of tomato. International Journal of Economic Plants, 11(3), 347-352. https://doi.org/10.23910/2/2024.5493b

Mariani, L., & Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—Drought, salinity, hypoxia, and lodging. Horticulturae, 3(4), 52. https://doi.org/10.3390/horticulturae3040052

Meddich, A., Ait El Mokhtar, M., Bourzik, W., Mitsui, T., Baslam, M., & Hafidi, M. (2018). Optimizing growth and tolerance of date palm (Phoenix dactylifera L.) to drought, salinity, and vascular fusarium-induced wilt (Fusarium oxysporum) by application of arbuscular mycorrhizal fungi(Amf). In: Giri, B., Prasad, R., Varma, A. (Eds.), Root Biology (Vol. 52, pp. 239–258). Springer International Publishing. https://doi.org/10.1007/978-3-319-75910-4_9

Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., Bamouh, A., & Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of Moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11(7), 1373. https://doi.org/10.3390/agronomy11071373

Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K., & Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites, 10(12), 505. https://doi.org/10.3390/metabo10120505

Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2021). Modes of action of biostimulants in plants. In Biostimulants for Crops from Seed Germination to Plant Development (pp. 445–459). Elsevier. https://doi.org/10.1016/B978-0-12-823048-0.00015-0

Park, H.-A., Hayden, M. M., Bannerman, S., Jansen, J., & Crowe-White, K. M. (2020). Anti-apoptotic effects of carotenoids in neurodegeneration. Molecules 2020, 25(15), 3453. https://doi.org/10.3390/molecules25153453

Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Miras Moreno, M. B., Reynaud, H., Canaguier, R., Trtílek, M., Panzarová, K., & Colla, G. (2019). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Frontiers of Plant Sciences, 10, 1–18. https://doi.org/10.3389/fpls.2019.00493

Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—a comprehensive review. Critical Reviews in Food Science and Nutrition, 55(7), 919–929. https://doi.org/10.1080/10408398.2012.657809

Quintarelli, V., Borgatti, D., Baretta, M., Stazi, S.R., Allevato, E., Pancaldi, S., Baldisserotto, C., Mancinelli, R., Tedeschi, P., Radicetti, E. and Ben Hassine, M. (2025). Microbial biofertilizers and algae‐based biostimulant affect fruit yield characteristics of organic processing tomato. Journal of the Science of Food and Agriculture, 105(1), 530-539. https://scijournals.onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.13851

Sadigov, R. (2022). Rapid growth of the world population and its socioeconomic results. The Scientific World Journal, 2022(1), 8110229.

Sani, M. N. H., Islam, M. N., Uddain, J., Chowdhury, M. S. N., & Subramaniam, S. (2020). Synergistic effect of microbial and nonmicrobial biostimulants on growth, yield, and nutritional quality of organic tomato. Crop science, 60(4), 2102-2114. https://doi.org/10.1002/csc2.20176

Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European journal of soil biology, 57, 1–8. https://doi.org/10.1016/j.ejsobi.2013.03.006

Subramaniyan, L., Veerasamy, R., Prabhakaran, J., Selvaraj, A., Algarswamy, S., Karuppasami, K. M., Thangavel, K., & Nalliappan, S. (2023). Biostimulation effects of seaweed extract (Ascophyllum nodosum) on phytomorpho-physiological, yield, and quality traits of tomato (Solanum lycopersicum L.). Horticulturae, 9(3), 348. https://doi.org/10.3390/horticulturae9030348

Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. https://doi.org/10.1186/s40538-017-0089-5

Weisser, M., Mattner, S. W., Southam-Rogers, L., Hepworth, G., & Arioli, T. (2024). Effect of a fortified biostimulant extract on tomato plant productivity, physiology, and growing media properties. Plants, 13(1), 4. https://doi.org/10.3390/plants13010004

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in plant science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049




DOI: http://doi.org/10.17503/agrivita.v47i2.4755

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.