Repairing Old and Damaged Cocoa Plants Through Rehabilitation Without the Felling of Trees

Marliana S. Palad, Aminah Aminah, Nasaruddin Nasaruddin, Ida Suryani, Ravika Mutiara

Abstract


This study aims to evaluate the effectiveness of Trichoderma asperellum and Azotobacter chroococcum in providing nutrients and nutrient uptake after treatment inarching grafting on cocoa trees' rehabilitation efforts. The Split Plot Design, with two factors, namely the application of T. asperellum and A. chroococcum were repeated three times and continued using ANOVA and Tukey HSD at a 5%. Rehabilitation of cocoa plants that are relatively old age can be done without the need to cut down a cocoa tree, by way of modification Inarching grafting with environmentally friendly farming systems, so that farmers do not need a long time to produce cocoa beans. This research concluded that the inarching grafting method can be used to rehabilitate cocoa plants of relatively old ages and damage, with applications, T. asperellum (4 g/l) and A. chroococcum (4 × 108 CFU/ml) the dose of 40 ml per plant with a frequency of twice application to each plant. This treatment is the best interaction that can reduce the number of young fruits falling (74.15%), boost the number of flowers (264.71%), the number of young fruits formed (271.65%), and the number of surviving fruits (117%) and production.


Keywords


Azotobacter chroococcum; Cocoa rehabilitation; Inarching grafting; Productivity; Trichoderma asperellum

Full Text:

PDF

References


Abdel-Aziez, S. M., Eweda, W. E., Girgis, M. G. Z., & Abdel Ghany, B. F. (2014). Improving the productivity and quality of black cumin (Nigella sativa) by using Azotobacter as N2 biofertilizer. Annals of Agricultural Sciences, 59(1), 95–108. https://doi.org/10.1016/j.aoas.2014.06.014

Abdul-Halim, A. M. A. A., Shivanand, P., Krishnamoorthy, S., & Taha, H. (2023). A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer. Journal of Applied Biology and Biotechnology, 11(5), 34–46. https://doi.org/10.7324/JABB.2023.11504

Amaresh, Y. S., Chennappa, G., Avinash, S., Naik, M. K., & Sreenivasa, M. Y. (2019). Trichoderma—A new strategy in combating agriculture problems. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 235–244). Elsevier. https://doi.org/10.1016/B978-0-12-818258-1.00015-7

Asghar, W., & Kataoka, R. (2021). Effect of co ‑ application of Trichoderma spp . with organic composts on plant growth enhancement , soil enzymes and fungal community in soil. Archives of Microbiology, 203(7), 4281–4291. https://doi.org/10.1007/s00203-021-02413-4

Athinuwat, D., Ruangwong, O. U., Harishchandra, D. L., Pitija, K., & Sunpapao, A. (2024). Biological control activities of rhizosphere fungus Trichoderma virens T1-02 in suppressing flower blight of flamingo flower (Anthurium andraeanum Lind.). Journal of Fungi, 10(1), 1–14. https://doi.org/10.3390/jof10010066

Banik, A., Kumar, G., Swain, P., & Kumar, U. (2019). Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 ( MCC 3432 ) can increase rice yield under green house and field condition. Microbiological Research, 219(June 2018), 56–65. https://doi.org/10.1016/j.micres.2018.11.004

Chowdappa, P., Mohan Kumar, S. P., Jyothi Lakshmi, M., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009

de Sousa, W. N., Brito, N. F., Felsemburgh, C. A., Vieira, T. A., & Lustosa, D. C. (2021). Evaluation of Trichoderma spp. isolates in cocoa seed treatment and seedling production. Plants, 10(9), 1964. https://doi.org/10.3390/plants10091964

Guigón-López, C., Vargas-Albores, F., Guerrero-Prieto, V., Ruocco, M., & Lorito, M. (2015). Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biology, 119(4), 264–273. https://doi.org/10.1016/j.funbio.2014.12.013

Hang, X., Meng, L., Ou, Y., Shao, C., Xiong, W., Zhang, N., Liu, H., Li, R., Shen, Q., & Kowalchuk, G. A. (2022). Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. npj Biofilms and Microbiomes, 8(1), 1–7. https://doi.org/10.1038/s41522-022-00321-z

Inayati, A., Sulistyowati, L., Aini, L. Q., & Yusnawan, E. (2020). Mycoparasitic activity of indigenous Trichoderma virens strains against mungbean soil borne pathogen Rhizoctonia solani: Hyperparasite and hydrolytic enzyme production. AGRIVITA Journal of Agricultural Science, 42(2), 229–242. https://doi.org/10.17503/agrivita.v0i0.2514

Kumar, U., Kaviraj, M., Panneerselvam, P., Priya, H., Chakraborty, K., Swain, P., Chatterjee, S. N., Sharma, S. G., Nayak, P. K., & Nayak, A. K. (2019). Ascorbic acid formulation for survivability and diazotrophic efficacy of Azotobacter chroococcum Avi2 (MCC 3432) under hydrogen peroxide stress and its role in plant-growth promotion in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 139, 419–427. https://doi.org/10.1016/j.plaphy.2019.04.003

Lahive, F., Hadley, P., & Daymond, A. J. (2018). The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica, 56(3), 911–920. https://doi.org/10.1007/s11099-017-0743-y

Mahato, S., & Kafle, A. (2018). Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Annals of Agrarian Science, 16(3), 250–256. https://doi.org/10.1016/j.aasci.2018.04.004

Meena, R. S., Kumar, S., Bohra, J. S., & Jat, M. L. (Eds.). (2019). Sustainable management of soil and environment. Springer Singapore. https://doi.org/10.1007/978-981-13-8832-3

Nasaruddin, & Ridwan, I. (2018). Effectivity of Azotobacter chroococcum and arbuscular mycorrhiza fungi on physiological characteristics and growth of cocoa seedlings. IOP Conference Series: Earth and Environmental Science, 157, 012014. https://doi.org/10.1088/1755-1315/157/1/012014

Okoth, S. A., Otadoh, J. A., & Ochanda, J. O. (2011). Improved seedling emergence and growth of maize and beans by Trichoderma harziunum. Tropical and Subtropical Agroecosystems, 13, 65–71. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-04622011000400011#:~:text=Trichoderma%20increased%20the%20rate%20of,the%20fungus%20on%20the%20plants.

Pal Saha, S., Bhattacharyya, S., & Chakraborty, H. (2014). Solubilization of tricalcium phosphate by P(3HB) accumulating Azotobacter chroococcum MAL-201. World Journal of Microbiology and Biotechnology, 30(5), 1575–1582. https://doi.org/10.1007/s11274-013-1580-1

Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S. L., & Lorito, M. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92, 176–181. https://doi.org/10.1016/j.cropro.2016.11.010

Petrisor, C., Paica, A., &, Burnichi, F. (2019). Physiological and growth response of tomato plants after Trichoderma spp. seed treatments. Studia Universitatis Babeș-Bolyai Chemia, 64(2 T2), 567–577. https://doi.org/10.24193/subbchem.2019.2.49

Poveda, J., & Eugui, D. (2022). Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biological Control, 176, 105100. https://doi.org/10.1016/j.biocontrol.2022.105100

Qi, Q., Fan, C., Wu, H., Sun, L., & Cao, C. (2023). Preparation of Trichoderma asperellum microcapsules and biocontrol of cucumber powdery mildew. Microbiology Spectrum, 11(3), e05084-22. https://doi.org/10.1128/spectrum.05084-22

Rodrigues, M. Â., Ladeira, L. C., & Arrobas, M. (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy, 93, 88–94. https://doi.org/10.1016/j.eja.2018.01.002

Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D., & Bonilla, R. (2017). Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum ): Effect in reducing N fertilization. Revista Argentina de Microbiología, 49(4), 377–383. https://doi.org/10.1016/j.ram.2017.04.006

Saba, H., Vibhash, D., Manisha, M., Prashant, K. S., Farhan, H., & Tauseef, A. (2012). Trichoderma – a promising plant growth stimulator and biocontrol agent. Mycosphere, 3(4), 524–531. https://doi.org/10.5943/mycosphere/3/4/14

Santhosh, K. S., Akhila, D. S., Dechamma, M. M., Rajeshwari, V., & Reddy, A. D. (2019). An integrative approach to understand the role of the nitrogen fixing microbial consortia in the environment. Journal of Pharmacognosy and Phytochemistry, 8(2), 909–915. https://www.phytojournal.com/special-issue/2019.v8.i2S.7723/an-integrative-approach-to-understand-the-role-of-the-nitrogen-fixing-microbial-consortia-in-the-environment

Singh, D. P., Singh, H. B., & Prabha, R. (Eds.). (2016). Microbial inoculants in sustainable agricultural productivity. Springer India. https://doi.org/10.1007/978-81-322-2647-5

Thaha, A. R., Umrah, U., Asrul, A., Rahim, A., & Fajra, F. (2020). The role of local isolates of Trichoderma sp. as a decomposer in the substrate of cacao pod rind (Theobroma cacao L.). Agriculture and Food, 5(July), 825–834. https://doi.org/10.3934/agrfood.2020.4.825

Wani, S., Chand, S., & Ali, T. (2013). Potential use of Azotobacter chroococcum in crop production: An overview. Current Agriculture Research Journal, 1(1), 35–38. https://doi.org/10.12944/CARJ.1.1.04




DOI: http://doi.org/10.17503/agrivita.v47i2.4595

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.