Enlargement of Tubers from Flower Blooming to Seeds Ripening in Konjac Plant (Amorphophallus muelleri Blume)

Benyamin Lakitan, Dora Fatma Nurshanti, Strayker Ali Muda, Yakup Yakup, Nardiah Rizwana Jaafar, Rosli Md. Illyas

Abstract


The cultivation of konjac plants (Amorphophallus muelleri Blume) is mainly initiated by the accumulation of glucomannan in their tuber. Many studies of konjac plants are limited until konjac tubers are suitable for harvest, not extended to the flowering stage. This study focused on tubers' development in the flower bud formation phase until seed development. The results of this study show that only one flower grows from each tuber. It takes 40+2 days for the konjac flower to bloom fully but 3+1 days for the flower to wither. The weight, diameter, and thickness of the konjac tubers used as planting material were 0.342+0.014 kg, 8.23+0.26 cm, and 5.75+0.17 cm, respectively, and significantly grew to 2.70+0.156 kg, 19.96+0.560 cm, and 12.73+0.335 cm, respectively at the time of harvest. Konjac plants promote thick lateral roots at the base of the petiole and fibrous roots on the tuber skin. During the enlargement of the tubers, the thickness and diameter ratio did not change. The cross-sectional shape of petioles and spadix is slightly oval. The number of seeds per plant correlated with the female flower's length, diameter, and cylindrical area. Finally, tubers decompose, and a new one or more starts to grow.


Keywords


Flowers without leaves; Lateral root; Petiole photosynthesis; Planting material; Tuber growth

Full Text:

PDF

References


Chua, M., Hocking, T. J., Chan, K., & Baldwin, T. C. (2013). Temporal and spatial regulation of glucomannan deposition and mobilization in corms of Amorphophallus konjac (Araceae). American Journal of Botany, 100(2), 337-345. DOI

Claudel, C., Loiseau, O., Silvestro, D., Lev‐Yadun, S., & Antonelli, A. (2023). Patterns and drivers of heat production in the plant genus Amorphophallus. The Plant Journal, 115(4), 874-894. DOI

Handayani, T., Yuzammi, & Hadiah, J. T. (2020). Inflorescence morphology and development of suweg (Amorphophallus paeoniifolius (Dennst.) Nicolson). Biodiversitas Journal of Biological Diversity, 21(12), 5835-5844. DOI

Henry, R. J., Furtado, A., & Rangan, P. (2020). Pathways of photosynthesis in non-leaf tissues. Biology, 9(12), 438. DOI

Lin, F., Chen, S. P., Lin, K. H., Chen, C., Yao, F., Zhong, L., Chen, W. & Kuo, Y. W. (2022). Integrated small RNA profiling and degradome analysis of Anthurium andraeanum cultivars with different-colored spathes. Journal of Plant Research, 135(4), 609-626. DOI

Liu, D., Zhang, P., Liu, D., Feng, Y., Chi, M., Guo, Z., Wang, X., Zhong, J. & Sun, M. (2023). An analysis of volatile compounds and study of release regularity in the flower of Amorphophallus titanum in four periods. Horticulturae, 9(4), 487. DOI

Nurlela, N., Ariesta, N., Santosa, E., & Muhandri, T. (2022). Physicochemical properties of glucomannan isolated from fresh tubers of Amorphophallus muelleri Blume by a multilevel extraction method. Food Research, 6(4), 345-353. DOI

Nurshanti, D. F., Lakitan, B., Hasmeda, M., & Ferlinahayati, F. (2023). Shoot emergence, leaf expansion, and corm growth in Amorphophallus muelleri Blume treated with hydropriming and shading. AGRIVITA Journal of Agricultural Science, 45(1), 98-109. DOI

Protto, V., Bauget, F., Rishmawi, L., Nacry, P., & Maurel, C. (2024). Primary, seminal and lateral roots of maize show type-specific growth and hydraulic responses to water deficit. Plant Physiology, 194(4), 2564–2579. DOI

Rishmawi, L., Bauget, F., Protto, V., Bauland, C., Nacry, P., & Maurel, C. (2023). Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities. Plant Physiology, 192(3), 2404-2418. DOI

Satiti, R., Utami, T., Widada, J., & Harmayani, E. (2025). Characterization and prebiotic activity in vitro of hydrolyzed glucomannan extracted from fresh porang tuber (Amorphophallus oncophyllus). Trends in Sciences, 22(1), 8617-8617. DOI

Shenglin, Z., Xuekuan, J., & Purwadaria, H. K. (2020). Field production of konjac. George Srzednicki & Chaleeda Borompichaichartkul (Eds.), Konjac Glucomannan (pp. 115-159). Boca Raton, Florida, US: CRC Press. DOI

Shiba, M., Mizuno, T., & Fukuda, T. (2023). Effect of strong wind on laminas and petioles of Farfugium japonicum (L.) Kitam. var. japonicum (Asteraceae). Frontiers in Plant Science, 14, 1182266. DOI

Shu, F., Wang, D., Sarsaiya, S., Jin, L., Liu, K., Zhao, M., Wang, X., Yao, Z., Chen, G., & Chen, J. (2024). Bulbil initiation: a comprehensive review on resources, development, and utilisation, with emphasis on molecular mechanisms, advanced technologies, and future prospects. Frontiers in Plant Science, 15, 1343222. DOI

Song, B., Chen, J., Lev‐Yadun, S., Niu, Y., Gao, Y., Ma, R., Armbruster, W. S., & Sun, H. (2024). Multifunctionality of angiosperm floral bracts: a review. Biological Reviews, 99(3), 1100-1120. DOI

Sun, W., Ma, N., Huang, H., Wei, J., Ma, S., Liu, H., Zhang, S., Zhang, Z., Sui, X., & Li, X. (2021). Photosynthetic contribution and characteristics of cucumber stems and petioles. BMC Plant Biology, 21, 1-14. DOI

Wang, G., Yu, F., Wu, H., Hu, S., Wu, S., Pei, N., Shi, J., & Lambers, H. (2023). Roots originating from different shoot parts are functionally different in running bamboo, Phyllostachys glauca. Functional Ecology, 37(4), 1082-1094. DOI

Wunnenberg, J., Rjosk, A., Neinhuis, C., & Lautenschläger, T. (2021). Strengthening structures in the petiole–lamina junction of peltate leaves. Biomimetics, 6(2), 25. DOI

Xu, C., Yu, C., Yang, S., Deng, L., Zhang, C., Xiang, J., & Shang, L. (2023). Effects of physical properties of konjac glucomannan on appetite response of rats. Foods, 12(4), 743. DOI

Xu, R., Zheng, X., Chen, C., Li, M., Li, J., Zhou, H., Gong, Y., Yan, X., & Wang, C. (2024). Effects of different substrates on the growth and yield of Amorphophallus muelleri. Heliyon 10(10), e31501. DOI

Xue, T., Xiong, Y., Shi, J., Chao, Q., Zhu, Y., Duan, Y., Sheng, W., Teng, J., & Xue, J. (2021). UHPLC-MS-based metabolomic approach for the quality evaluation of Pinellia ternata tubers grown in shaded environments. Journal of Natural Medicines, 75, 1050-1057. DOI

Zahra, A. M., Indrayanti, E., Nugroho, B. D. A., & Masithoh, R. E. (2023). Effect of varying color led lights on porang (Amorphophallus muelleri) bulbil seed germination and porang plant vegetative growth phase. BIO Web of Conferences, 80, 07003. DOI

Zhang, Y., Hang, Y., Yan, F., Xie, T., Tian, Y., & Zhang, M. (2024). Mass propagation of microtubers from suspension cultures of Pinellia ternata cells and quality analysis of the regenerated tubers. Plant Cell, Tissue and Organ Culture, 157(1), 2. DOI

Zhao, Y., Yang, M., Qi, Y., Gao, P., Ke, Y., Liu, J., Wei, H., Li, L., Pan, H., Huang, F. & Yu, L. (2024). Combined analysis of the metabolome and transcriptome shed new light on the mechanisms of seed maturation in Amorphophallus muelleri. Journal of Plant Growth Regulation, 43(11), 4263-4278. DOI

Zierer, W., Rüscher, D., Sonnewald, U., & Sonnewald, S. (2021). Tuber and tuberous root development. Annual review of plant biology, 72, 551-580. DOI




DOI: http://doi.org/10.17503/agrivita.v47i1.4588

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.