Mortality and Antifeedant Effects of some Jamu Waste Extract on Larvae of Spodoptera litura
Abstract
The amount of herbal waste in Indonesia is quite high, so it needs to be managed to reduce the amount and increase the value of benefits. One way is to utilize it as a botanical insecticide. This study aims to determine the effect and concentration of herbal waste extract that is effective on mortality and inhibition of feeding activity of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Larvae of S. litura are one of the pests in mustard plants. The extraction method used a maceration method with ethanol solvent. Research using four types of herbal waste extracts with a leaf dipping method. The results show that four extracts affect increased mortality and inhibition of the feeding activity of S. litura larvae. The value of LC50 is at 60 HAA, LT50, and the inhibition of eating activity at a concentration of 36% by ginger jamu waste extract is 29%, 27 hours, and 64%. In contrast, curcuma jamu waste extract was 25%, 24 hours, and 68%, respectively. For LC50 at 72 HAA, LT50 and inhibition of eating activity at a 50% concentration of galangal jamu waste extract was 17%, 14 hours, and 43%. While turmeric jamu waste extract was 17%, 16 hours, and 42% respectively.
Keywords
Full Text:
PDFReferences
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. DOI
Abdel-Aziz, S. M., Aeron, A., & Kahil, T. A. (2016). Health benefits and possible risks of herbal medicine. In N. Garg, S. M. Abdel-Aziz, & A. Aeron (Eds.), Microbes in Food and Health (pp. 97–116). Springer International Publishing. DOI
Agarwal, M., Walia, S., Dhingra, S., & Khambay, B. P. S. (2001). Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (Ginger) rhizomes. Pest Management Science, 57(3), 289–300. DOI
Albaqami, J. J., Hamdi, H., Narayanankutty, A., Visakh, N. U., Sasidharan, A., Kuttithodi, A. M., Famurewa, A. C., & Pathrose, B. (2022). Chemical composition and biological activities of the leaf essential oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics, 11(11), 1547. DOI
AlSalhi, M. S., Elumalai, K., Devanesan, S., Govindarajan, M., Krishnappa, K., & Maggi, F. (2020). The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Industrial Crops and Products, 158, 113012. DOI
Amuji, C. F., Echezona, B. C. & Dialoke, S. A. (2012). Extraction fractions of ginger (Zingiber officinale Roscoe) and residue in the control of field and storage pests. Journal of Agricultural Technology, 8(6), 2023-2031. PDF
Anwar, C., Syukur, K. Y., Dalilah, D., Salni, S., & Novrikasari, N. (2018). The efficacy of red ginger fraction (Zingiber officinale Roscoe var. Rubrum) as insecticidal Aedes aegypti. Bioscientia Medicina: Journal of Biomedicine and Translational Research, 2(2), 31–41. DOI
Asfi, S. H., Rahayu, Y. S., & Yuliani. (2015). Uji bioaktivitas filtrat rimpang jahe merah (Zingiber officinale) terhadap tingkat mortalitas dan penghambatan aktivitas makan larva Plutella xylostella secara in-vitro. LenteraBio, 4(1), 50–55. website
Blaney, W. M., Simmonds, M. S. J., Ley, S. V., Anderson, J. C., & Toogood, P. L. (1990). Antifeedant effects of azadirachtin and structurally related compounds on Lepidopterous larvae. Entomologia Experimentalis et Applicata, 55(2), 149–160. DOI
Boekoesoe, L., & Ahmad, Z. F. (2022). The extraction of Zingiber officinale Rosc as a natural insecticide for Aedes aegypti larvae. Jurnal Kesehatan Masyarakat, 18(2), 250–257. DOI
Bragard, C., Dehnen‐Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas‐Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., … MacLeod, A. (2019). Pest categorisation of Spodoptera litura. EFSA Journal, 17(7). DOI
De Souza Tavares, W., Akhtar, Y., Gonçalves, G. L. P., Zanuncio, J. C., & Isman, M. B. (2016). Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists. Scientific Reports, 6(1), 34093. DOI
Díaz-Fleischer, F., Arredondo, J., Lasa, R., Bonilla, C., Debernardi, D., Pérez-Staples, D., & Williams, T. (2019). Sickly sweet: Insecticidal polyols induce lethal regurgitation in Dipteran pests. Insects, 10(2), 53. DOI
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., Kumar, A., Singh, R. P., Meena, R. S., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. DOI
Dutta, B. (2015). Study of secondary metabolite constituents and curcumin contents of six different species of genus Curcuma. Journal of Medicinal Plants Studies, 3(5), 116-119. website
Hamada, H. M., Awad, M., El-Hefny, M., & Moustafa, M. A. M. (2018). Insecticidal Activity of Garlic (Allium sativum) and Ginger (Zingiber officinale) Oils on the Cotton Leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). African Entomology, 26(1), 84–94. DOI
Hezakiel, H. E., Thampi, M., Rebello, S., & Sheikhmoideen, J. M. (2024). Biopesticides: A green approach towards agricultural pests. Applied Biochemistry and Biotechnology, 196(8), 5533–5562. DOI
Joshi, B., Pandya, D., & Mankad, A. (2018). Comparative study of Phytochemical Screening and Antibacterial Activity of Curcuma longa (L.) and Curcuma aromatica (Salib.). Journal of Medicinal Plants, 6(6), 145-148. website
Kabir, K. E., Choudhary, M. I., Ahmed, S., & Tariq, R. M. (2013). Growth-disrupting, larvicidal and neurobehavioral toxicity effects of seed extract of Seseli diffusum against Aedes aegypti (L.) (Diptera: Culicidae). Ecotoxicology and Environmental Safety, 90, 52–60. DOI
Kumrungsee, N., Dunkhunthod, B., Manoruang, W., Koul, O., Pluempanupat, W., Kainoh, Y., Yooboon, T., Piyasaengthong, N., Bullangpoti, V., & Nobsathian, S. (2022). Synergistic interaction of thymol with Piper ribesioides (Piperales: Piperaceae) extracts and isolated active compounds for enhanced insecticidal activity against Spodoptera exigua (Lepidoptera: Noctuidae). Chemical and Biological Technologies in Agriculture, 9(1), 38. DOI
Lengai, G. M. W., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, e00239. DOI
Mario, M. B., Astuti, L. P., Hsu, J. L., Kafle, L., & Fernando, I. (2023). Bioefficacy of eight different plant powders applied as fumigants against the adzuki bean weevil, Callosobruchus chinensis. Crop Protection, 167, 106200. DOI
Mbaveng, A. T., & Kuete, V. (2017). Zingiber officinale. In Medicinal Spices and Vegetables from Africa (pp. 627–639). Elsevier. DOI
Melanie, Hermawan, W., Kasmara, H., Kholifa, A. H., Rozi, A. F., & Panatarani, C. (2018). Antifeedant Activity of Ethanolic Leaf Extract of Lantana camara Against Crocidolomia pavonana and Spodoptera litura. Journal of Powder Technology Advance Functional Materials, 1(2), 15-25. DOI
Naviglio, D., Trifuoggi, M., Varchetta, F., Nebbioso, V., Perrone, A., Avolio, L., De Martino, E., Montesano, D., & Gallo, M. (2023). Efficiency of recovery of the bioactive principles of plants by comparison between solid–liquid extraction in mixture and single-vegetable matrices via maceration and RSLDE. Plants, 12(16), 2900. DOI
Noor Hasyierah, M. S., Norhidayah, A., Rahayu, M. A., Adilah, A., & Nur Humaira, I. (2020). Botanical insecticide of chili and ginger extract on Nilaparvata lugens, brown planthopper. IOP Conference Series: Materials Science and Engineering, 932(1), 012001. DOI
Olufemi-Salami, F. K., Adeyemi, J. A., & Akinneye, J. O. (2023). Comparative Effect of Dichlorvos and Ginger (Zingiber officinale L.) on the Indian Meal Moth (Plodia interpunctella hübner) Feeding on Zea mays Grains. Journal of Horticultural Research, 31(2), 159–168. DOI
Oyeniyi, E. A., Gbaye, O. A., & Holloway, G. J. (2015). Interactive effect of cowpea variety, dose and exposure time on bruchid tolerance to botanical pesticides. African Crop Science Journal 23(2), 165-175. website
Rohimatun., Dadang., Winasa, I. W., & Yuliani, S. (2020). Kompatibilitas Ekstrak Piper retrofractrum Vahl. dan Curcuma xanthorrhiza Roxb. untuk pengendalian Helopeltis antonii Sign. Buletin Penelitian Tanaman Rempah dan Obat, 31(2), 107-122. DOI
Sahayaraj, K. (1998). Antifeedant effect of some plant extracts on the Asian armyworm, Spodoptera litura (Fabricius). Current Science, 74(6), 523-525. website
Su, Q., Zhou, Z., Zhang, J., Shi, C., Zhang, G., Jin, Z., Wang, W., & Li, C. (2018). Effect of plant secondary metabolites on common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomological Research, 48(1), 18–26. DOI
Toan, D. H., Hoang, D. V., Hoang, V. D., Quang, L. D., & Lam, T. D. (2021). Application of botanical pesticides in organic agriculture production: Potential and challenges. Vietnam Journal of Science and Technology, 59(6), 679-701. DOI
Ukoroije, R. B., & Otayor, R. A. (2020). Review on the bio-insecticidal properties of some plant secondary metabolites: Types, Formulations, modes of action, advantages and limitations. Asian Journal of Research in Zoology, 3(4), 27-60. DOI
Usman, R., Putra, M. F., & Sari, R. I. P. (2019). Pengolahan limbah ampas ekstrasi jamu menjadi pupuk kompos. Prosiding Seminar Nasional Pengabdian Masyarakat LPPM UMJ.
Widiyaningrum, P., Indriyanti, D. R., Priyono, B., Asiyah, N., & Putri, P. L. F. (2020). Antifeedant effect of some medicinal plant extracts against rice weevil. Pakistan Journal of Biological Sciences, 23(7), 953-958. DOI
Yang, H., Piao, X., Zhang, L., Song, S., & Xu, Y. (2018). Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Industrial Crops and Products, 124, 412–417. DOI
Yulistyana, A. D., Wilson, W., & Iswara, A. (2020). Test Effectiveness of Biolarvasides on the Extract of Cucumber (Cucumis sativus L.) and Pare Leaves (Momordica charantia) on Aedes aegypti Mosquito Larva. Jurnal Labora Medika, 4, 38-41. website
Zhang, J., Li, S., Li, W., Chen, Z., Guo, H., Liu, J., Xu, Y., Xiao, Y., Zhang, L., Arunkumar, K. P., Smagghe, G., Xia, Q., Goldsmith, M. R., Takeda, M., & Mita, K. (2021). Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura. Communications Biology, 4(1), 286. DOI
Zhang, M., Zhao, R., Wang, D., Wang, L., Zhang, Q., Wei, S., Lu, F., Peng, W., & Wu, C. (2021). Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytotherapy Research, 35(2), 711–742. DOI
DOI: http://doi.org/10.17503/agrivita.v47i1.4564
Copyright (c) 2025 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.