Effect of Regulated Deficit Irrigation on Cucumber Growth and Fruit Yield in Greenhouse Conditions

Muhammad Mumtaz Khan, Saleem Juma Al-Subhi, Muhammad Tahir Akram, Waleed Al-Busaidi, Sajjad Ahmad Siddiqi, Aitazaz A. Farooque

Abstract


Water scarcity is an extreme global concern due to changing climate and rapid population growth. Worldwide, freshwater sources are depleting and there is a need to implement water-conserving approaches in water-limited or arid areas for sustainable crop production. Therefore, this study aimed to investigate the impact of deficit irrigation on cucumber plant physiology, growth, and fruit yield traits grown under greenhouse conditions. The experiment was conducted in a complete randomized design with four water regimes, 100%, 80%, 60%, and 40% crop water requirement (ETc). Results showed that the highest plant leaf chlorophyll contents (43.2 µmol m-2), plant biomass (12.43 g), plant height (172.39 cm), number of leaves (19.85), fruit yield (2.49 kg), and total soluble solids (3.73 °Brix) were in plants irrigated at 100% level. In comparison, the lowest plant height (115.73 cm), number of leaves (15.77) and fruit yield (1.81 kg) were recorded at 40% irrigation. Results revealed that reduced irrigation regimes up to 80% or 60% have no significant inhibitory effects on cucumber agro-morphological traits. However, 40% of irrigation levels showed significantly reduced plant morphological and fruit yield traits. Overall, the result demonstrated that regulated deficit irrigation can significantly conserve water without negatively impacting cucumber yield.

Keywords


Deficit irrigation; Greenhouse crops; Plant biomass; Sustainable Production; Water Scarcity

Full Text:

PDF

References


Abd El-Mageed, T. A., Semida, W. M., Taha, R. S., & Rady, M. M. (2018). Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Scientia horticulturae, 237, 148-155. https://doi.org/10.1016/j.scienta.2018.04.014

Abdi, H., & Williams, L.J. (2010). Tukey's Honestly Significant Difference (HSD) Test. In: N. Salkind (ed)., Encyclopedia of Research Design (pp.1–5).Thousand Oaks, CA.

Abdoulaye, A. O., Lu, H., Zhu, Y., Alhaj Hamoud, Y., & Sheteiwy, M. (2019). The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate, 7(10), 124. https://doi.org/10.3390/cli7100124

Adu, M. O., Yawson, D. O., Abano, E. E., Asare, P. A., Armah, F. A., & Opoku, E. K. (2019). Does water-saving irrigation improve the quality of fruits and vegetables? Evidence from met analysis. Irrigation Science, 37, 669-690. https://doi.org/10.1007/s00271-019-00646-2

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), 05109.

Al‐Sadi, A. M., & Deadman, M. L. (2010). Influence of seed‐borne Cochliobolus sativus (Anamorph Bipolaris sorokiniana) on crown rot and root rot of barley and wheat. Journal of phytopathology, 158(10), 683-690. https://doi.org/10.1111/j.1439-0434.2010.01684.x

Al-Zubari, W., Al-Turbak, A., Zahid, W., Al-Ruwis, K., Al-Tkhais, A., Al-Muataz, I., Abdelwahab, A., Murad, A., Al-Harbi, M., & Al-Sulaymani, Z. (2017). An overview of the GCC Unified Water Strategy (2016–2035). Desalination and Water Treatment, 81, 1–18. https://doi.org/10.5004/dwt.2017.20864

Atar, F., Güney, D., Bayraktar, A., Yildirim, N., & Turna, İ. (2020). Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science, 4(2), 245–256. https://doi.org/10.32328/turkjforsci.711389

Bhattarai, B., Singh, S., West, C. P., Ritchie, G. L., & Trostle, C. L. (2020). Effect of deficit irrigation on physiology and forage yield of forage sorghum, pearl millet, and corn. Crop Science, 60(4), 2167-2179. https://doi.org/10.4314/ajfand.v10i2.53356.

Birhanu, K., & Tilahun, K. (2010). Fruit yield and quality of drip-irrigated tomato under deficit irrigation. African Journal of Food Agriculture Nutrition and Development, 10(2), 2139-2151. https://doi.org/10.4314/ajfand.v10i2.53356.

Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. https://doi.org/10.1016/j.fcr.2007.07.004

Costa, J. M., Ortuño, M. F., & Chaves, M. M. (2007). Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49(10), 1421–1434. https://doi.org/10.1111/j.1672-9072.2007.00556.x

Daher, B. T., & Mohtar, R. H. (2015). Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water International, 40(5–6), 748–771. https://doi.org/10.1080/02508060.2015.1074148

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021

Fan, Z., Lin, S., Zhang, X., Jiang, Z., Yang, K., Jian, D., Chen, Y., Li, J., Chen, Q., & Wang, J. (2014). Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agricultural Water Management, 144, 11–19. https://doi.org/10.1016/j.agwat.2014.05.010

Gholami, M., Rahemi, M., & Rastegar, S. (2012). Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Scientia Horticulturae, 143, 7–14. https://doi.org/10.1016/j.scienta.2012.05.012

Hao, S. X, Cao, H. X, Wang, H.B, & Pan, X. Y. (2019). Effects of water stress at different growth stages on comprehensive fruit quality and yield in different bunches of tomatoes in greenhouses. International Journal of Agricultural and Biological Engineering, 12(3): 67–76. https://doi.org/10.25165/j.ijabe.20191203.4468

Imran, Amanullah, & Ortas, I. (2022). Agronomic practices improved cucumber productivity, nutrients uptake and quality. Gesunde Pflanzen, 74(3), 595–602. https://doi.org/10.1007/s10343-022-00634-1

Khan, M. M., Al-Haddabi, M. H., Akram, M. T., Khan, M. A., Farooque, A. A., & Siddiqi, S. A. (2021). Assessment of non-conventional irrigation water in greenhouse cucumber (Cucumis sativus) production. Sustainability, 14(1), 257. https://doi.org/10.3390/su14010257

Kirnak, H., & Demirtas, M. N. (2006). Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditions. Journal of plant nutrition, 29(9), 1675-1690. https://doi.org/10.1080/01904160600851619

Lambers, H., & Oliveira, R. S. (2019). Plant water relations. Plant physiological ecology, 187-263. https://doi.org/10.1007/978-3-030-29639-1_5

Musie, W., & Gonfa, G. (2023). Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon, 9(8), e18685. https://doi.org/10.1016/j.heliyon.2023.e18685

Nemeskeri, E., & Helyes, L. (2019). Physiological responses of selected vegetable crop species to water stress. Agronomy, 9(8), 447. https://doi.org/10.3390/agronomy9080447.

Omotade, İ., & Babalola, İ. (2019). Assessment of yıeld and fruıt qualıty of cucumber (Cucumis sativus) under defıcıt irrıgatıon in the agro-ecologıcal tropıcal zone. International Journal of Engineering Science and Application, 3(3), 137–141.

Parkash, V., & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. https://doi.org/10.3390/su12103945

Parkash, V., Singh, S., Singh, M., Deb, S. K., Ritchie, G. L., & Wallace, R. W. (2021). Effect of deficit irrigation on root growth, soil water depletion, and water use efficiency of cucumber. HortScience, 56(10), 1278-1286. https://doi.org/10.21273/HORTSCI16052-21

Perez-Sarmiento, F., Alcobendas, R., Mounzer, O., Alarcon, J., & Nicolas, E. (2010). Effects of regulated deficit irrigation on physiology and fruit quality in apricot trees. Spanish Journal of Agricultural Research, 8, 86-94. https://doi.org/10.5424/sjar/201008S2-1351

Razaq, A., Khan, M. J., Sarwar, T., & Khan, M. J. (2019). Influence of deficit irrigation, sowing methods and mulching on yield components and yield of wheat in semiarid environment. Pakistan Journal of Botany, 51(2), 553-560. https://doi.org/10.30848/PJB2019-2(12)

Reddy, S. R., & Nayak, P. (2018). Crop production with limited irrigation: A review. Agricultural reviews, 39(1), 12-21. https://doi.org/10.18805/ag.R-1680

Sampathkumar, T., Pandian, B. J., Jeyakumar, P., & Manickasundaram, P. (2014). Effect of deficit irrigation on yield, relative leaf water content, leaf proline accumulation and chlorophyll stability index of cotton–maize cropping sequence. Experimental agriculture, 50(3), 407-425. https://doi.org/10.1017/S0014479713000598

Sanni, K. (2015). Effects of Nutrient Sources on the Growth and Yield of Cucumber (Cucumis sativus) and on Soil Properties in Ikorodu Agro-Ecological Zone. Synergy in Science: Partnering for Solutions 2015 Annual Meeting. https://scisoc.confex.com/crops/2015am/webprogram/Paper91389.html

Schiavon, M., Shaddox, T. W., Williams, K. E., Gallo, S., Boeri, P. A., Unruh, J. B., Kruse, J., & Kenworthy, K. (2021). Nitrogen requirements for deficit‐irrigated bermudagrass (Cynodon spp.) fairways in South Florida. Journal of Agronomy and Crop Science, 209(1), 1-11. https://doi.org/10.1111/jac.12558

Sharma, S., Leskovar, D., & Crosby, K. (2019). Genotypic differences in leaf gas exchange and growth responses to deficit irrigation in reticulatus and inodorus melons (Cucumis melo L.). Photosynthetica. 57, 237–247. https://doi.org/10.32615/ps.2019.022

Singh, M., Singh, P., Singh, S., Saini, R. K., & Angadi, S. V. (2021). A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Scientific reports, 11(1), 22095. https://doi.org/10.1038/s41598-021-01433-w

Sushma, K., Saidaiah, P., Reddy, K. R., Sudini, H., & Geetha, A. (2020). Correlation and Path Coefficient Analysis in Tomato (Solanum lycopersicum L.). International Journal of Current Microbiology and Applied Sciences, 9(11), 2569-2575. https://doi.org/10.20546/ijcmas.2020.911.311

Thakur, J., & Shinde, B. (2020). Effect of water stress and AM fungi on the growth performance of pea. International Journal of Applied Biology, 4(1), 36-43. https://doi.org/10.20956/ijab.v4i1.9446

Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2019). Estimates for world population and global food availability for global health. In The role of functional food security in global health (pp. 3-24). Academic Press.

Yuan, X. K., Yang, Z., Li, Y.X., Liu, Q., & Han, W. (2016). Effects of different levels of wa ter stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54, 28–39. https://doi.org/10.1007/s11099-015-0122-5

Zegbe-Domınguez, J. A., Behboudian, M. H., Lang, A., & Clothier, B. E. (2003). Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’processing tomato (Lycopersicon esculentum, Mill.). Scientia Horticulturae, 98(4), 505-510. https://doi.org/10.1016/S0304-4238(03)00036-0

Zekri, S. (2008). Using economic incentives and regulations to reduce seawater intrusion in the Batinah coastal area of Oman. Agricultural Water Management, 95(3), 243–252 https://doi.org/10.1016/j.agwat.2007.10.006




DOI: http://doi.org/10.17503/agrivita.v46i3.4555

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.