Effect of Regulated Deficit Irrigation on Cucumber Growth and Fruit Yield in Greenhouse Conditions
Abstract
Keywords
Full Text:
PDFReferences
Abd El-Mageed, T. A., Semida, W. M., Taha, R. S., & Rady, M. M. (2018). Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Scientia horticulturae, 237, 148-155. https://doi.org/10.1016/j.scienta.2018.04.014
Abdi, H., & Williams, L.J. (2010). Tukey's Honestly Significant Difference (HSD) Test. In: N. Salkind (ed)., Encyclopedia of Research Design (pp.1–5).Thousand Oaks, CA.
Abdoulaye, A. O., Lu, H., Zhu, Y., Alhaj Hamoud, Y., & Sheteiwy, M. (2019). The global trend of the net irrigation water requirement of maize from 1960 to 2050. Climate, 7(10), 124. https://doi.org/10.3390/cli7100124
Adu, M. O., Yawson, D. O., Abano, E. E., Asare, P. A., Armah, F. A., & Opoku, E. K. (2019). Does water-saving irrigation improve the quality of fruits and vegetables? Evidence from met analysis. Irrigation Science, 37, 669-690. https://doi.org/10.1007/s00271-019-00646-2
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), 05109.
Al‐Sadi, A. M., & Deadman, M. L. (2010). Influence of seed‐borne Cochliobolus sativus (Anamorph Bipolaris sorokiniana) on crown rot and root rot of barley and wheat. Journal of phytopathology, 158(10), 683-690. https://doi.org/10.1111/j.1439-0434.2010.01684.x
Al-Zubari, W., Al-Turbak, A., Zahid, W., Al-Ruwis, K., Al-Tkhais, A., Al-Muataz, I., Abdelwahab, A., Murad, A., Al-Harbi, M., & Al-Sulaymani, Z. (2017). An overview of the GCC Unified Water Strategy (2016–2035). Desalination and Water Treatment, 81, 1–18. https://doi.org/10.5004/dwt.2017.20864
Atar, F., Güney, D., Bayraktar, A., Yildirim, N., & Turna, İ. (2020). Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science, 4(2), 245–256. https://doi.org/10.32328/turkjforsci.711389
Bhattarai, B., Singh, S., West, C. P., Ritchie, G. L., & Trostle, C. L. (2020). Effect of deficit irrigation on physiology and forage yield of forage sorghum, pearl millet, and corn. Crop Science, 60(4), 2167-2179. https://doi.org/10.4314/ajfand.v10i2.53356.
Birhanu, K., & Tilahun, K. (2010). Fruit yield and quality of drip-irrigated tomato under deficit irrigation. African Journal of Food Agriculture Nutrition and Development, 10(2), 2139-2151. https://doi.org/10.4314/ajfand.v10i2.53356.
Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. https://doi.org/10.1016/j.fcr.2007.07.004
Costa, J. M., Ortuño, M. F., & Chaves, M. M. (2007). Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49(10), 1421–1434. https://doi.org/10.1111/j.1672-9072.2007.00556.x
Daher, B. T., & Mohtar, R. H. (2015). Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water International, 40(5–6), 748–771. https://doi.org/10.1080/02508060.2015.1074148
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
Fan, Z., Lin, S., Zhang, X., Jiang, Z., Yang, K., Jian, D., Chen, Y., Li, J., Chen, Q., & Wang, J. (2014). Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agricultural Water Management, 144, 11–19. https://doi.org/10.1016/j.agwat.2014.05.010
Gholami, M., Rahemi, M., & Rastegar, S. (2012). Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Scientia Horticulturae, 143, 7–14. https://doi.org/10.1016/j.scienta.2012.05.012
Hao, S. X, Cao, H. X, Wang, H.B, & Pan, X. Y. (2019). Effects of water stress at different growth stages on comprehensive fruit quality and yield in different bunches of tomatoes in greenhouses. International Journal of Agricultural and Biological Engineering, 12(3): 67–76. https://doi.org/10.25165/j.ijabe.20191203.4468
Imran, Amanullah, & Ortas, I. (2022). Agronomic practices improved cucumber productivity, nutrients uptake and quality. Gesunde Pflanzen, 74(3), 595–602. https://doi.org/10.1007/s10343-022-00634-1
Khan, M. M., Al-Haddabi, M. H., Akram, M. T., Khan, M. A., Farooque, A. A., & Siddiqi, S. A. (2021). Assessment of non-conventional irrigation water in greenhouse cucumber (Cucumis sativus) production. Sustainability, 14(1), 257. https://doi.org/10.3390/su14010257
Kirnak, H., & Demirtas, M. N. (2006). Effects of different irrigation regimes and mulches on yield and macronutrition levels of drip-irrigated cucumber under open field conditions. Journal of plant nutrition, 29(9), 1675-1690. https://doi.org/10.1080/01904160600851619
Lambers, H., & Oliveira, R. S. (2019). Plant water relations. Plant physiological ecology, 187-263. https://doi.org/10.1007/978-3-030-29639-1_5
Musie, W., & Gonfa, G. (2023). Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon, 9(8), e18685. https://doi.org/10.1016/j.heliyon.2023.e18685
Nemeskeri, E., & Helyes, L. (2019). Physiological responses of selected vegetable crop species to water stress. Agronomy, 9(8), 447. https://doi.org/10.3390/agronomy9080447.
Omotade, İ., & Babalola, İ. (2019). Assessment of yıeld and fruıt qualıty of cucumber (Cucumis sativus) under defıcıt irrıgatıon in the agro-ecologıcal tropıcal zone. International Journal of Engineering Science and Application, 3(3), 137–141.
Parkash, V., & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability, 12(10), 3945. https://doi.org/10.3390/su12103945
Parkash, V., Singh, S., Singh, M., Deb, S. K., Ritchie, G. L., & Wallace, R. W. (2021). Effect of deficit irrigation on root growth, soil water depletion, and water use efficiency of cucumber. HortScience, 56(10), 1278-1286. https://doi.org/10.21273/HORTSCI16052-21
Perez-Sarmiento, F., Alcobendas, R., Mounzer, O., Alarcon, J., & Nicolas, E. (2010). Effects of regulated deficit irrigation on physiology and fruit quality in apricot trees. Spanish Journal of Agricultural Research, 8, 86-94. https://doi.org/10.5424/sjar/201008S2-1351
Razaq, A., Khan, M. J., Sarwar, T., & Khan, M. J. (2019). Influence of deficit irrigation, sowing methods and mulching on yield components and yield of wheat in semiarid environment. Pakistan Journal of Botany, 51(2), 553-560. https://doi.org/10.30848/PJB2019-2(12)
Reddy, S. R., & Nayak, P. (2018). Crop production with limited irrigation: A review. Agricultural reviews, 39(1), 12-21. https://doi.org/10.18805/ag.R-1680
Sampathkumar, T., Pandian, B. J., Jeyakumar, P., & Manickasundaram, P. (2014). Effect of deficit irrigation on yield, relative leaf water content, leaf proline accumulation and chlorophyll stability index of cotton–maize cropping sequence. Experimental agriculture, 50(3), 407-425. https://doi.org/10.1017/S0014479713000598
Sanni, K. (2015). Effects of Nutrient Sources on the Growth and Yield of Cucumber (Cucumis sativus) and on Soil Properties in Ikorodu Agro-Ecological Zone. Synergy in Science: Partnering for Solutions 2015 Annual Meeting. https://scisoc.confex.com/crops/2015am/webprogram/Paper91389.html
Schiavon, M., Shaddox, T. W., Williams, K. E., Gallo, S., Boeri, P. A., Unruh, J. B., Kruse, J., & Kenworthy, K. (2021). Nitrogen requirements for deficit‐irrigated bermudagrass (Cynodon spp.) fairways in South Florida. Journal of Agronomy and Crop Science, 209(1), 1-11. https://doi.org/10.1111/jac.12558
Sharma, S., Leskovar, D., & Crosby, K. (2019). Genotypic differences in leaf gas exchange and growth responses to deficit irrigation in reticulatus and inodorus melons (Cucumis melo L.). Photosynthetica. 57, 237–247. https://doi.org/10.32615/ps.2019.022
Singh, M., Singh, P., Singh, S., Saini, R. K., & Angadi, S. V. (2021). A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Scientific reports, 11(1), 22095. https://doi.org/10.1038/s41598-021-01433-w
Sushma, K., Saidaiah, P., Reddy, K. R., Sudini, H., & Geetha, A. (2020). Correlation and Path Coefficient Analysis in Tomato (Solanum lycopersicum L.). International Journal of Current Microbiology and Applied Sciences, 9(11), 2569-2575. https://doi.org/10.20546/ijcmas.2020.911.311
Thakur, J., & Shinde, B. (2020). Effect of water stress and AM fungi on the growth performance of pea. International Journal of Applied Biology, 4(1), 36-43. https://doi.org/10.20956/ijab.v4i1.9446
Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2019). Estimates for world population and global food availability for global health. In The role of functional food security in global health (pp. 3-24). Academic Press.
Yuan, X. K., Yang, Z., Li, Y.X., Liu, Q., & Han, W. (2016). Effects of different levels of wa ter stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 54, 28–39. https://doi.org/10.1007/s11099-015-0122-5
Zegbe-Domınguez, J. A., Behboudian, M. H., Lang, A., & Clothier, B. E. (2003). Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’processing tomato (Lycopersicon esculentum, Mill.). Scientia Horticulturae, 98(4), 505-510. https://doi.org/10.1016/S0304-4238(03)00036-0
Zekri, S. (2008). Using economic incentives and regulations to reduce seawater intrusion in the Batinah coastal area of Oman. Agricultural Water Management, 95(3), 243–252 https://doi.org/10.1016/j.agwat.2007.10.006
DOI: http://doi.org/10.17503/agrivita.v46i3.4555
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.