Genome Wide Association Study Identifies Candidate Loci or Genes Responsible for Bacterial Stalk Rot Resistance in Maize

Devi Mienanti, Iqbal Hidayat, Yanuar Danaatmadja, Mohammad Bahrelfi Belaffif, Budi Waluyo, Arifin Noor Sugiharto, Ajay Goel Kumar, Kuswanto Kuswanto

Abstract


Bacterial stalk rot (BSR) disease is caused by Dickeya zeae, where infection on maize could lead to an enormous yield loss. Although curative action to control BSR infection can be done using bactericides, preventing the establishment of infection is still the best approach in minimizing potential yield loss. Among the different methods in preventing BSR infection, the use of resistant maize hybrid is considered the best approach. In this study, Genome Wide Associated Study (GWAS) was employed to find SNP markers associated with BSR resistance in maize. Six hundred twenty four lines were divided into two observation groups and further phenotyped for BSR resistance at 5, 10, and 15 days after inoculation (DAI) with BSR. GWAS was performed in a time-series manner using MLM (Mixed Linear Model) controlling for population structure and kinship. We found one SNP marker in chromosome 2 displaying significant association to BSR resistance spanning the entire observation periods. We also found SNP markers with significant association to BSR spanning two consecutive observation days located in chromosome 2 and 5. These results would hopefully contribute to the development of hybrid maize with better resistance against BSR.


Keywords


Bacterial stalk rot; Dickeya zeae; GWAS; Maize; Resistance

Full Text:

PDF

References


Ahamad, S., Kher, D., & Lal, B. (2015). Stalk Rot of Maize Diseases in the Intermediate Zone of Jammu Region. International Journal of Innovative Science, Engineering & Technology, 2(12), 1024-1032. https://ijiset.com/vol2/v2s12/IJISET_V2_I12_121.pdf

Baer, O. T. (2022). QTL Analyses for Bacterial Stalk Rot and Diplodia Ear Rot Resistance, and Grain Yield in Maize (Zea mays L.) from Segregating and Doubled Haploid Populations [Thesis]. University of the Philippines Los Baños.

Baer, O. T., Laude, T. P., Reano, C. E., Gregorio, G. B., Diaz, M. G. Q., Tamba, L., Pabro, L. J. A., Fabreag, M. E. R., Pocsedio, A. E., & Kumar, A. G. (2021). Mapping QTL for Bacterial Stalk Rot Resistance in Maize (Zea mays L.) Segregating Populations. Philippine Journal of Crop Science (PJCS), 46(3), 9–17. https://www.researchgate.net/publication/362229452_Mapping_QTL_for_Bacterial_Stalk_Rot_Resistance_in_Maize_Zea_mays_L_Segregating_Populations

Bian, Y., & Holland, J. B. (2017). Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity, 118, 585–593. https://doi.org/10.1038/hdy.2017.4

Canama, A. O., & Hautea, D. M. (2011). Molecular Mapping of Resistance to Bacterial Stalk Rot (Pectobacterium chrysanthemi pv. zeae Burk., McFad. and Dim.) in Tropical White Maize (Zea mays L.). The Philippine Agriculturist Scientist, 93(4), 429–438. https://www.researchgate.net/publication/277100889_Molecular_Mapping_of_Resistance_to_Bacterial_Stalk_Rot_Pectobacterium_chrysanthemi_pv_zeae_Burk_McFad_and_Dim_in_Tropical_White_Maize_Zea_mays_L

Caplik, D., Kusek, M., Kara, S., Seyrek, A., & Celik, Y. (2022). First report of bacterial stalk rot of maize caused by Dickeya zeae in Turkey. New Disease Reports, 45, e12070. https://doi.org/10.1002/ndr2.12070

Elhaik, E. (2022). Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12(1), 14683. https://doi.org/10.1038/s41598-022-14395-4

Ford, C. (2015, August 26). Understanding Q-Q Plots. University of Virginia Library. https://data.library.virginia.edu/understanding-q-q-plots/

Hoffman, G. E. (2013). Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions. PLOS ONE, 8(10), e75707. https://doi.org/10.1371/journal.pone.0075707

Hooda, K. S., Bagaria, P. K., Khokhar, M., Kaur, H., & Rakshit, S. (2018). Mass Screening Techniques for Resistance to Maize Diseases. ICAR-Indian Institute of Maize Research. https://iimr.icar.gov.in/wp-content/uploads/2020/03/Bulletin-Mass-Screening.pdf

Hufford, M. B., Seetharam, A. S., Woodhouse, M. R., Chougule, K. M., Ou, S., Liu, J., Ricci, W. A., Guo, T., Olson, A., Qiu, Y., Della Coletta, R., Tittes, S., Hudson, A. I., Marand, A. P., Wei, S., Lu, Z., Wang, B., Tello-Ruiz, M. K., Piri, R. D., … Dawe, R. K. (2021). De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 373(6555), 655–662. https://doi.org/10.1126/science.abg5289

Kumar, A., Hunjan, M. S., Kaur, H., Rawal, R., Kumar, A., & Singh, P. P. (2017). A review on bacterial stalk rot disease of maize caused by Dickeya zeae. Journal of Applied and Natural Science, 9(2), 1214–1225. https://doi.org/10.31018/jans.v9i2.1348

Li, G., & Zhu, H. (2013). Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies. The Open Bioinformatics Journal, 7(1), 27–33. https://doi.org/10.2174/1875036201307010027

Liu, H., An, T., Zhao, Y., Du, X., Bi, X., Zhang, Z., Chen, Y., & Wen, J. (2022). Benzoxazines in the Root Exudates Responsible for Nonhost Disease Resistance of Maize to Phytophthora sojae. Phytopathology®, 112(7), 1537–1544. https://doi.org/10.1094/PHYTO-12-21-0508-R

Liu, S., Fu, J., Shang, Z., Song, X., & Zhao, M. (2021). Combination of Genome-Wide Association Study and QTL Mapping Reveals the Genetic Architecture of Fusarium Stalk Rot in Maize. Frontiers in Agronomy, 2, 590374. https://doi.org/10.3389/fagro.2020.590374

Martinez-Cisneros, B. A., Juarez-Lopez, G., Valencia-Torres, N., Duran-Peralta, E., & Mezzalama, M. (2014). First Report of Bacterial Stalk Rot of Maize Caused by Dickeya zeae in Mexico. Plant disease, 98(9), 1267–1267. https://doi.org/10.1094/pdis-02-14-0198-pdn

Mienanti, D., Hidayat, I., Danaatmadja, Y., Belaffif, M. B., Waluyo, B., Sugiharto, A. N., Kumar, A. G., & Kuswanto. (2024). Large-scale evaluation of Indonesian elite maize breeding lines for resistance against bacterial stalk rot caused by Dickeya zeae. AGRIVITA Journal of Agricultural Science, 46(1), 172–182. http://doi.org/10.17503/agrivita.v46i1.4350

Modena, B. D., Doroudchi, A., Patel, P., & Sathish, V. (2019). Chapter 18—Leveraging genomics to uncover the genetic, environmental and age-related factors leading to asthma. In G. S. Ginsburg, H. F. Willard, E. L. Tsalik, & C. W. Woods (Eds.), Genomic and Precision Medicine (Third Edition) (pp. 331–381). Academic Press. https://doi.org/10.1016/B978-0-12-801496-7.00018-6

Müller, B. S. F., de Almeida Filho, J. E., Lima, B. M., Garcia, C. C., Missiaggia, A., Aguiar, A. M., Takahashi, E., Kirst, M., Gezan, S. A., Silva-Junior, O. B., Neves, L. G., & Grattapaglia, D. (2019). Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. New Phytologist, 221(2), 818–833. https://doi.org/10.1111/nph.15449

Myung, I.-S., Jeong, I. H., Moon, S. Y., Kim, W. G., Lee, S. W., Lee, Y. H., Lee, Y.-K., Shim, H. S., & Ra, D. S. (2010). First report of bacterial stalk rot of sweet corn caused by Dickeya zeae in Korea. New Disease Reports, 22, 15. https://doi.org/10.5197/j.2044-0588.2010.022.015

Perera, M. A., & Hernandez, W. (2022). 2.04 - GPCR Patient Drug Interaction—Pharmacogenetics: Genome-Wide Association Studies (GWAS). In T. Kenakin (Ed.), Comprehensive Pharmacology (pp. 27–52). Elsevier. https://doi.org/10.1016/B978-0-12-820472-6.00136-5

Pirinen, M. (2022, December 13). Genome-wide Association Studies. University of Helsinki. https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/

Rashid, Z., Sofi, M., Harlapur, S. I., Kachapur, R. M., Dar, Z. A., Singh, P. K., Zaidi, P. H., Vivek, B. S., & Nair, S. K. (2020). Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Scientific Reports, 10, 21949. https://doi.org/10.1038/s41598-020-78928-5

Singh, P., & Singh, Y. (2016). Evaluation of Inoculation Methods and Standardization of Erwinia chrysanthemi Inoculum Concentration for Germplasm Screening against Stalk Rot in Sorghum. Journal of Pure and Applied Microbiology, 10(4), 2747–2752. https://doi.org/10.22207/JPAM.10.4.33

Singh, R. P., Chitara, M. K., & Chauhan, S. (2020). Bacterial stalk rot of Maize and their Management. Indian Farmers’ Digest, 53(010), 10–11. https://www.researchgate.net/publication/352507237_Bacterial_Stalk_Rot_of_Maize_and_their_Management

Stagnati, L., Lanubile, A., Samayoa, L. F., Bragalanti, M., Giorni, P., Busconi, M., Holland, J. B., & Marocco, A. (2019). A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Fusarium verticillioides Infection of Seedlings in a Maize Diversity Panel. G3 Genes|Genomes|Genetics, 9(2), 571–579. https://doi.org/10.1534/g3.118.200916

Suriani, Patandjengi, B., Junaid, M., & Muis, A. (2021). The presence of bacterial stalk rot disease on corn in Indonesia: A review. IOP Conference Series: Earth and Environmental Science, 911(1), 012058. https://doi.org/10.1088/1755-1315/911/1/012058

USDA, F. A. S. (2023). World Agricultural Production (WAP 1-23). United States Department of Agriculture. https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/3197zz672/sj13bd53n/production.pdf

Wang, C.-T., & Song, W. (2014). ZmCK3, a maize calcium-dependent protein kinase gene, endows tolerance to drought and heat stresses in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 249–256. https://doi.org/10.1007/s13562-013-0208-8

Wang, J., & Zhang, Z. (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genomics, Proteomics & Bioinformatics, 19(4), 629–640. https://doi.org/10.1016/j.gpb.2021.08.005

Wang, M., Yan, J., Zhao, J., Song, W., Zhang, X., Xiao, Y., & Zheng, Y. (2012). Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Science, 196, 125–131. https://doi.org/10.1016/j.plantsci.2012.08.004

Xia, W., Luo, T., Zhang, W., Mason, A. S., Huang, D., Huang, X., Tang, W., Dou, Y., Zhang, C., & Xiao, Y. (2019). Development of High-Density SNP Markers and Their Application in Evaluating Genetic Diversity and Population Structure in Elaeis guineensis. Frontiers in Plant Science, 10, 130. https://doi.org/10.3389/fpls.2019.00130

Yoshihara, T., Miller, N. D., Rabanal, F. A., Myles, H., Kwak, I.-Y., Broman, K. W., Sadkhin, B., Baxter, I., Dilkes, B. P., Hudson, M. E., & Spalding, E. P. (2022). Leveraging orthology within maize and Arabidopsis QTL to identify genes affecting natural variation in gravitropism. Proceedings of the National Academy of Sciences, 119(40), e2212199119. https://doi.org/10.1073/pnas.2212199119

Yu, Y., Shi, J., Li, X., Liu, J., Geng, Q., Shi, H., Ke, Y., & Sun, Q. (2018). Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics, 19(1), 742. https://doi.org/10.1186/s12864-018-5072-4

Zheng, Y., Yuan, F., Huang, Y., Zhao, Y., Jia, X., Zhu, L., & Guo, J. (2021). Genome-wide association studies of grain quality traits in maize. Scientific Reports, 11(1), 9797. https://doi.org/10.1038/s41598-021-89276-3




DOI: http://doi.org/10.17503/agrivita.v46i3.4525

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.