Genome Wide Association Study Identifies Candidate Loci or Genes Responsible for Bacterial Stalk Rot Resistance in Maize

Devi Mienanti, Iqbal Hidayat, Yanuar Danaatmadja, Mohammad Bahrelfi Belaffif, Budi Waluyo, Arifin Noor Sugiharto, Ajay Goel Kumar, Kuswanto Kuswanto

Abstract


Bacterial stalk rot (BSR) disease is caused by Dickeya zeae, where infection on maize could lead to an enormous yield loss. Although curative action to control BSR infection can be done using bactericides, preventing the establishment of infection is still the best approach in minimizing potential yield loss. Among the different methods in preventing BSR infection, the use of resistant maize hybrid is considered the best approach. In this study, Genome Wide Associated Study (GWAS) was employed to find SNP markers associated with BSR resistance in maize. Six hundred twenty four lines were divided into two observation groups and further phenotyped for BSR resistance at 5, 10, and 15 days after inoculation (DAI) with BSR. GWAS was performed in a time-series manner using MLM (Mixed Linear Model) controlling for population structure and kinship. We found one SNP marker in chromosome 2 displaying significant association to BSR resistance spanning the entire observation periods. We also found SNP markers with significant association to BSR spanning two consecutive observation days located in chromosome 2 and 5. These results would hopefully contribute to the development of hybrid maize with better resistance against BSR.


Keywords


Bacterial stalk rot; Dickeya zeae; GWAS; Maize; Resistance

Full Text:

PDF

References


Ahamad, S., Kher, D., & Lal, B. (2015). Stalk Rot of Maize Diseases in the Intermediate Zone of Jammu Region. International Journal of Innovative Science, Engineering & Technology, 2(12), 1024-1032. PDF

Baer, O. T. (2022). QTL Analyses for Bacterial Stalk Rot and Diplodia Ear Rot Resistance, and Grain Yield in Maize (Zea mays L.) from Segregating and Doubled Haploid Populations [Thesis]. University of the Philippines Los Baños.

Baer, O. T., Laude, T. P., Reano, C. E., Gregorio, G. B., Diaz, M. G. Q., Tamba, L., Pabro, L. J. A., Fabreag, M. E. R., Pocsedio, A. E., & Kumar, A. G. (2021). Mapping QTL for Bacterial Stalk Rot Resistance in Maize (Zea mays L.) Segregating Populations. Philippine Journal of Crop Science (PJCS), 46(3), 9–17. website

Bian, Y., & Holland, J. B. (2017). Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity, 118, 585–593. DOI

Canama, A. O., & Hautea, D. M. (2011). Molecular Mapping of Resistance to Bacterial Stalk Rot (Pectobacterium chrysanthemi pv. zeae Burk., McFad. and Dim.) in Tropical White Maize (Zea mays L.). The Philippine Agriculturist Scientist, 93(4), 429–438. website

Caplik, D., Kusek, M., Kara, S., Seyrek, A., & Celik, Y. (2022). First report of bacterial stalk rot of maize caused by Dickeya zeae in Turkey. New Disease Reports, 45, e12070. DOI

Elhaik, E. (2022). Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12(1), 14683. DOI

Ford, C. (2015, August 26). Understanding Q-Q Plots. University of Virginia Library. website

Hoffman, G. E. (2013). Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions. PLOS ONE, 8(10), e75707. DOI

Hooda, K. S., Bagaria, P. K., Khokhar, M., Kaur, H., & Rakshit, S. (2018). Mass Screening Techniques for Resistance to Maize Diseases. ICAR-Indian Institute of Maize Research. PDF

Hufford, M. B., Seetharam, A. S., Woodhouse, M. R., Chougule, K. M., Ou, S., Liu, J., Ricci, W. A., Guo, T., Olson, A., Qiu, Y., Della Coletta, R., Tittes, S., Hudson, A. I., Marand, A. P., Wei, S., Lu, Z., Wang, B., Tello-Ruiz, M. K., Piri, R. D., … Dawe, R. K. (2021). De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 373(6555), 655–662. DOI

Kumar, A., Hunjan, M. S., Kaur, H., Rawal, R., Kumar, A., & Singh, P. P. (2017). A review on bacterial stalk rot disease of maize caused by Dickeya zeae. Journal of Applied and Natural Science, 9(2), 1214–1225. DOI

Li, G., & Zhu, H. (2013). Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies. The Open Bioinformatics Journal, 7(1), 27–33. DOI

Liu, H., An, T., Zhao, Y., Du, X., Bi, X., Zhang, Z., Chen, Y., & Wen, J. (2022). Benzoxazines in the Root Exudates Responsible for Nonhost Disease Resistance of Maize to Phytophthora sojae. Phytopathology®, 112(7), 1537–1544. DOI

Liu, S., Fu, J., Shang, Z., Song, X., & Zhao, M. (2021). Combination of Genome-Wide Association Study and QTL Mapping Reveals the Genetic Architecture of Fusarium Stalk Rot in Maize. Frontiers in Agronomy, 2, 590374. DOI

Martinez-Cisneros, B. A., Juarez-Lopez, G., Valencia-Torres, N., Duran-Peralta, E., & Mezzalama, M. (2014). First Report of Bacterial Stalk Rot of Maize Caused by Dickeya zeae in Mexico. Plant disease, 98(9), 1267–1267. DOI

Mienanti, D., Hidayat, I., Danaatmadja, Y., Belaffif, M. B., Waluyo, B., Sugiharto, A. N., Kumar, A. G., & Kuswanto. (2024). Large-scale evaluation of Indonesian elite maize breeding lines for resistance against bacterial stalk rot caused by Dickeya zeae. AGRIVITA Journal of Agricultural Science, 46(1), 172–182. DOI

Modena, B. D., Doroudchi, A., Patel, P., & Sathish, V. (2019). Chapter 18—Leveraging genomics to uncover the genetic, environmental and age-related factors leading to asthma. In G. S. Ginsburg, H. F. Willard, E. L. Tsalik, & C. W. Woods (Eds.), Genomic and Precision Medicine (Third Edition) (pp. 331–381). Academic Press. DOI

Müller, B. S. F., de Almeida Filho, J. E., Lima, B. M., Garcia, C. C., Missiaggia, A., Aguiar, A. M., Takahashi, E., Kirst, M., Gezan, S. A., Silva-Junior, O. B., Neves, L. G., & Grattapaglia, D. (2019). Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. New Phytologist, 221(2), 818–833. DOI

Myung, I.-S., Jeong, I. H., Moon, S. Y., Kim, W. G., Lee, S. W., Lee, Y. H., Lee, Y.-K., Shim, H. S., & Ra, D. S. (2010). First report of bacterial stalk rot of sweet corn caused by Dickeya zeae in Korea. New Disease Reports, 22, 15. DOI

Perera, M. A., & Hernandez, W. (2022). 2.04 - GPCR Patient Drug Interaction—Pharmacogenetics: Genome-Wide Association Studies (GWAS). In T. Kenakin (Ed.), Comprehensive Pharmacology (pp. 27–52). Elsevier. DOI

Pirinen, M. (2022, December 13). Genome-wide Association Studies. University of Helsinki. website

Rashid, Z., Sofi, M., Harlapur, S. I., Kachapur, R. M., Dar, Z. A., Singh, P. K., Zaidi, P. H., Vivek, B. S., & Nair, S. K. (2020). Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Scientific Reports, 10, 21949. DOI

Singh, P., & Singh, Y. (2016). Evaluation of Inoculation Methods and Standardization of Erwinia chrysanthemi Inoculum Concentration for Germplasm Screening against Stalk Rot in Sorghum. Journal of Pure and Applied Microbiology, 10(4), 2747–2752. DOI

Singh, R. P., Chitara, M. K., & Chauhan, S. (2020). Bacterial stalk rot of Maize and their Management. Indian Farmers’ Digest, 53(010), 10–11. website

Stagnati, L., Lanubile, A., Samayoa, L. F., Bragalanti, M., Giorni, P., Busconi, M., Holland, J. B., & Marocco, A. (2019). A Genome Wide Association Study Reveals Markers and Genes Associated with Resistance to Fusarium verticillioides Infection of Seedlings in a Maize Diversity Panel. G3 Genes|Genomes|Genetics, 9(2), 571–579. DOI

Suriani, Patandjengi, B., Junaid, M., & Muis, A. (2021). The presence of bacterial stalk rot disease on corn in Indonesia: A review. IOP Conference Series: Earth and Environmental Science, 911(1), 012058. DOI

USDA, F. A. S. (2023). World Agricultural Production (WAP 1-23). United States Department of Agriculture. PDF

Wang, C.-T., & Song, W. (2014). ZmCK3, a maize calcium-dependent protein kinase gene, endows tolerance to drought and heat stresses in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 249–256. DOI

Wang, J., & Zhang, Z. (2021). GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genomics, Proteomics & Bioinformatics, 19(4), 629–640. DOI

Wang, M., Yan, J., Zhao, J., Song, W., Zhang, X., Xiao, Y., & Zheng, Y. (2012). Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Science, 196, 125–131. DOI

Xia, W., Luo, T., Zhang, W., Mason, A. S., Huang, D., Huang, X., Tang, W., Dou, Y., Zhang, C., & Xiao, Y. (2019). Development of High-Density SNP Markers and Their Application in Evaluating Genetic Diversity and Population Structure in Elaeis guineensis. Frontiers in Plant Science, 10, 130. DOI

Yoshihara, T., Miller, N. D., Rabanal, F. A., Myles, H., Kwak, I.-Y., Broman, K. W., Sadkhin, B., Baxter, I., Dilkes, B. P., Hudson, M. E., & Spalding, E. P. (2022). Leveraging orthology within maize and Arabidopsis QTL to identify genes affecting natural variation in gravitropism. Proceedings of the National Academy of Sciences, 119(40), e2212199119. DOI

Yu, Y., Shi, J., Li, X., Liu, J., Geng, Q., Shi, H., Ke, Y., & Sun, Q. (2018). Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics, 19(1), 742. DOI

Zheng, Y., Yuan, F., Huang, Y., Zhao, Y., Jia, X., Zhu, L., & Guo, J. (2021). Genome-wide association studies of grain quality traits in maize. Scientific Reports, 11(1), 9797. DOI




DOI: http://doi.org/10.17503/agrivita.v46i3.4525

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.