Responses of Two Cocoa Varieties to Environmental Stress Conditions

Ayu Zahrotul Fuadati, Erwin Prastowo, Aminatun Munawarti, Rina Arimarsetiowati

Abstract


Environmental changes resulting from climate anomalies may have significant implications for the future of global cocoa sustainability. A study was conducted to investigate the responses of two different cocoa varieties, i.e., ICCRI 06H and ICCRI 08H, to various environmental conditions at the greenhouse scale. Two distinct factors, i.e., green-house microclimate and soil moisture level, were simulated in a split-split plot design. A glass box equipped with artificial light was installed to modify the ambient temperature and air humidity, providing two different conditions: inside (IB) and outside (OB) the glass box, assigned as the main plot. The performance of cocoa seedlings was tested as a subplot, and they were exposed to different soil moisture levels, i.e., 100% soil moisture (ETa1), 50% soil moisture (ETa2), and 25% soil moisture (ETa3), defined as sub-subplot. Data suggested a slight difference in daily air temperature and relative humidity fluctuations, in both plots, observed as a function of time. A higher response of the stomatal index and density, up to 20%, was found in the ETa3 treatment for ICCRI 08H. The stress simulation increased the ICCRI 08H proline by up to 36% and guaiacol peroxidase by 27% higher than ICCRI 06H.


Keywords


Climate change; Cocoa variety; Environmental stress; Soil moisture

Full Text:

PDF

References


Alhaithloul, H. A. S. (2019). Impact of combined heat and drought stress on the potential growth responses of the desert grass artemisia Sieberi ALBA: Relation to biochemical and molecular adaptation. Plants, 8(10), 416. https://doi.org/10.3390/plants8100416

Almeida, A.-A. F. D., & Valle, R. R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4), 425–448. https://doi.org/10.1590/S1677-04202007000400011

Ariza-Salamanca, A. J., Navarro-Cerrillo, R. M., Quero-Pérez, J. L., Gallardo-Armas, B., Crozier, J., Stirling, C., de Sousa, K. & González-Moreno, P. (2023). Vulnerability of cocoa-based agroforestry systems to climate change in West Africa. Scientific Reports, 13(1), 10033. https://doi.org/10.1038/s41598-023-37180-3

Ashour, M. B. A., Gee, S. J., & Hammock, B. D. (1987). Use of a 96-well microplate reader for measuring routine enzyme activities. Analytical Biochemistry, 166(2), 353–360. https://doi.org/10.1016/0003-2697(87)90585-9

Bari, A., Damania, A. B., Mackay, M., & Dayanandan, S. (2016). Applied mathematics and omics to assess crop genetic resources for climate change adaptive traits. Applied Mathematics and Omics to Assess Crop Genetic Resources for Climate Change Adaptive Traits, February, 1–300. https://doi.org/10.1201/b19518

Bawa, G., Yu, X., Liu, Z., Zhou, Y. & Sun, X. (2023). Surviving the enemies: Regulatory mechanisms of stomatal function in response to drought and salt stress. Environmental and Experimental Botany, 209, 105291. https://doi.org/10.1016/j.envexpbot.2023.105291

Cao, L., Fahim, A. M., Liang, X., Fan, S., Song, Y., Liu, H., Ye, F., Ma, C., Zhang, D. & Lu, X. (2024). Melatonin enhances heat tolerance via increasing antioxidant enzyme activities and osmotic regulatory substances by upregulating zmeno1 expression in maize (Zea mays L.). Antioxidants (Basel), 13(9):1144. https://doi.org/10.3390/antiox13091144

De Ronde, J. A., Van Der Mescht, A., & Steyn, H. S. F. (2000). Proline accumulation in response to drought and heat stress in cotton. African Crop Science Journal, 8(1). https://doi.org/10.4314/acsj.v8i1.27718

Devi, M. J., & Reddy, V. R. (2018). Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Frontiers in Plant Science, 871(October), 1–12. https://doi.org/10.3389/fpls.2018.01572

Driesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy, 10(12), 1975. https://doi.org/10.3390/agronomy10121975

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1–16. https://doi.org/10.3389/fpls.2017.01147

Gan, Y., Zhou, L., Shen, Z. J., Shen, Z. X., Zhang, Y. Q., & Wang, G. X. (2010). Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Botanical Studies, 51(3), 325–336.

Handayani, T., & Watanabe, K. (2020). The combination of drought and heat stress has a greater effect on potato plants than single stresses. Plant, Soil and Environment, 66(4), 175–182. https://doi.org/10.17221/126/2020-PSE

Hong, T., Lin, H., & He, D. (2018). Characteristics and correlations of leaf stomata in different Aleurites montana provenances. PLOS ONE, 13(12), e0208899. https://doi.org/10.1371/journal.pone.0208899

Hao, Y., Yuan, X., & Zhang, M. (2024). Enhanced relationship between seasonal soil moisture droughts and vegetation under climate change over China. Agricultural and Forest Meteorology, 358, 110258. https://doi.org/10.1016/j.agrformet.2024.110258

Hossain, M. A., Bhattacharjee, S., Armin, S.-M., Qian, P., Xin, W., Li, H.-Y., Burritt, D. J., Fujita, M., & Tran, L.-S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00420

Hutchins, A., Tamargo, A., Bailey, C., & Kim, Y. (2016). Assessment of climate change impacts on cocoa production and approaches to adaptation and mitigation: A contextual view of Ghana and Costa Rica. Environment, Development and Sustainability, 14(1), 1210557. http://dx.doi.org/10.1080/23311932.2016.1210557

IPCC. (2023). Climate Change 2023 Synthesis Report; IPCC: Geneva, Switzerland, 2023. https://www.unep.org/resources/report/climate-change-2023-synthesis-report#:~:text=The%20report%20provides%20the%20main,low%2Dincome%20and%20marginalized%20communities.

Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561–591. https://doi.org/10.1146/annurev-arplant-042809-112226

Lahive, F., Hadley, P., & Daymond, A. J. (2018). The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica, 56(3), 911–920. https://doi.org/10.1007/s11099-017-0743-y

Lum, M. S., Hanafi, M. M., Rafii, Y. M., & Akmar, A. S. N. (2014). Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. Journal of Animal and Plant Sciences, 24(5), 1487–1493. http://www.thejaps.org.pk/docs/v-24-5/28.pdf

Maghfiroh, C. N., Putra, E. T. S., & Dewi, H. (2020). Root detection by resistivity imaging and physiological activity with the dead-end trench on three clones of cocoa (Theobroma cacao). Biodiversitas Journal of Biological Diversity, 21(6). https://doi.org/10.13057/biodiv/d210656

Maherali, H., Reid, C. D., Polley, H. W., Johnson, H. B., & Jackson, R. B. (2002). Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C 4 grassland. Plant, Cell & Environment, 25(4), 557–566. https://doi.org/10.1046/j.1365-3040.2002.00832.x

Marcińska, I., Dziurka, K., Waligórski, P., Janowiak, F., Skrzypek, E., Warchoł, M., Juzoń, K., Kapłoniak, K., & Czyczyło-Mysza, I. M. (2020). Exogenous polyamines only indirectly induce stress tolerance in wheat growing in hydroponic culture under polyethylene glycol-induced osmotic stress. Life, 10(8), 1–20. https://doi.org/10.3390/life10080151

Medeiros, D. B., Silva, E. C. da, Santos, H. R. B., Pacheco, C. M., Musser, R. dos S., & Nogueira, R. J. M. C. (2012). Physiological and biochemical responses to drought stress in Barbados cherry. Brazilian Journal of Plant Physiology, 24(3), 181–192. https://doi.org/10.1590/S1677-04202012000300005

Medina, V., & Laliberte, B. (2017). A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change. Costa Rica: Bioversity International, 51p. https://hdl.handle.net/10568/89084

Moser, G., Leuschner, C., Hertel, D., Hölscher, D., Köhler, M., Leitner, D., Michalzik, B., Prihastanti, E., Tjitrosemito, S., & Schwendenmann, L. (2010). Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 79(2), 171–187. https://doi.org/10.1007/s10457-010-9303-1

Munawarti, A., Taryono, Semiarti, E., Holford, P., & Sismindari. (2013). Tolerance of Accessions of Glagah (Saccharum spontaneum) to Drought Stress and Their Accumulation of Proline. American Journal of Agricultural and Biological Sciences, 8(1), 1–11. https://doi.org/10.3844/ajabssp.2013.1.11

Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369–392. https://doi.org/10.1146/annurev-arplant-043014-114707

Prasad, A., Pospíšil, P., & Tada, M. (2019). Editorial: Reactive Oxygen Species (ROS) Detection Methods in Biological System. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01316

Pulatov, B., Linderson, M.-L., Hall, K., & Jönsson, A. M. (2015). Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agricultural and Forest Meteorology, 214–215, 281–292. https://doi.org/10.1016/j.agrformet.2015.08.266

Rahman, M. M., Ghosh, P. K., Akter, M., Al Noor, M. M., Rahman, M. A., Keya, S. S., Roni, M. S., Biswas, A., & Bulle, M. (2024). Green vanguards: Harnessing the power of plant antioxidants, signal catalysts, and genetic engineering to combat reactive oxygen species under multiple abiotic stresses. Plant Stress, 13, 100547. https://doi.org/10.1016/j.stress.2024.100547

Santos, I. C. dos, Almeida, A.-A. F. de, Anhert, D., Conceição, A. S. da, Pirovani, C. P., Pires, J. L., Valle, R. R., & Baligar, V. C. (2014). Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS ONE, 9(12), e115746. https://doi.org/10.1371/journal.pone.0115746

Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7). https://doi.org/10.3390/biom9070285

Sherwood, S., & Fu, Q. (2014). A drier future? Science, 343(6172), 737–739. https://doi.org/10.1126/science.1247620

Sholikhah, U., Manandar, D. A., & Andri, P. S. (2015). Karakter fisiologis klon kopi robusta BP 358 pada jenis penaung yang berbeda. Jurnal Agrovigor, 8(1), 58-67. https://journal.trunojoyo.ac.id/agrovigor/article/view/749

Shrestha, U. B., & Bawa, K. S. (2014). Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0106405

Slattery, R. A., & Ort, D. R. (2019). Carbon assimilation in crops at high temperatures. Plant, Cell & Environment, 42(10), 2750–2758. https://doi.org/10.1111/pce.13572

Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/j.tplants.2009.11.009

Wang, W., Cheng, Y., Ruan, M., Ye, Q., Yao, Z., Wang, R., Zhou, G., Liu, D. & Wan, H. (2023). Comprehensive identification of glutathione peroxidase (GPX) gene family in response to abiotic stress in pepper (Capsicum annuum L.). Gene, 881, 147625. https://doi.org/10.1016/j.gene.2023.147625

Ying, Y. Q., Song, L. L., Jacobs, D. F., Mei, L., Liu, P., Jin, S. H., & Wu, J. S. (2015). Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00361

Yuan, H., Cui, Y., Ning, S., Jiang, S., Yuan, X., & Tang, G. (2019). Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China. PLOS ONE, 14(11), e0223756. https://doi.org/10.1371/journal.pone.0223756

Yusniawati, Sudarsono, Aswidinnor, H., Hendrastuti, S., & Santoso, D. (2008). Pengaruh cekaman kekeringan terhadap pertumbuhan, hasil, dan kandungan prolina daun cabai. Jurnal Agrista, 12(1), 19-27. https://jurnal.usk.ac.id/agrista/article/view/1147

Zhang, Q. (2007). Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences, 104(42), 16402–16409. https://doi.org/10.1073/pnas.0708013104

Zhu, C., Hu, Y., Mao, H., Li, S., Li, F., Zhao, C., Luo, L., Liu, W. & Yuan, X. (2021). A deep learning-based method for automatic assessment of stomatal index in wheat microscopic images of leaf epidermis. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.716784




DOI: http://doi.org/10.17503/agrivita.v47i2.4425

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.