Effect of Boron Foliar Fertilizer and Mycoseed-Cookies on the Morphological and Seeds Production of Jack Bean (Canavalia ensiformis)

Yone Armaji, Luki Abdullah, Panca Dewi Manu Hara Karti, Dewi Apri Astuti, Nahrowi Nahrowi

Abstract


This research identified the effects of foliar application of boron fertilization and arbuscular mycorrhiza in the form of cookies (Miko-SC) on the growth and seed production of Jack bean. Jack bean (Canavalia ensiformis) is a dual-purpose crop that produces seeds and green-biomass as a source of protein for human consumption and animal feed. Boron and Miko-SC significantly influences seed growth and development, and arbuscular mycorrhiza can enhance mineral uptake. This study employed four doses of boron foliar fertilizer (0, 23, 46, and 69 mg/l) and three diameters of Miko-SC (4, 5, and 6 cm). The highest values of plant height, stem diameter, and leaf size were observed in the combination of 46 mg/l boron and 5-cm Miko-SC. The highest number of leaves, pod weight, and grain weight were achieved at 23 mg/l boron combined with 6-cm Miko-SC. Conclusively, the optimal combination of boron and arbuscular mycorrhiza in the form of Miko-SC cookies significantly enhanced the growth of Jack bean, offering valuable insights into cultivation improvement as a forage and food crop.

Keywords


Dual-purposes; Foliar fertilizer; Mikoseed cookies; Morphological; Seeds production

Full Text:

PDF

References


Abdel-Motagally, F. M. F., & El-Zohri, M. (2018). Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. Journal of the Saudi Society of Agricultural Sciences, 17(2), 178–185. DOI

Ali, F., Tariq, M., Ali, A., Shah, S. N. M., Ahmed, A., & Arifullah. (2014). Effect of different rates of boron on the yield, quality and micronutrients content of tobacco (Nicotiana tabacum L.). International Journal of Farming and Allied Sciences, 3(11), 1165-1173.

Alidust, M., Sedaghathoor, S., & Abedi Gheshlaghi, E. (2020). The effect of foliar application of boron and zinc on qualitative traits of hazelnut cultivars. Plant Physiology Reports, 25(1), 131–139. DOI

Atique-ur-Rehman, Farooq, M., Nawaz, A., Rehman, A., & Iqbal, S. (2015). Soil application of boron improves the tillering, leaf elongation, panicle fertility, yield and its grain enrichment in fine-grain aromatic rice. Journal of Plant Nutrition, 38(3), 338–354. DOI

Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., & Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. DOI

Bellaloui, N. (2012). Soybean seed phenol, lignin, and isoflavones and sugars composition altered by foliar boron application in soybean under water stress. Food and Nutrition Sciences, 3(4), 579–590. DOI

Bogiani, J. C., Amaro, A. C. E., & Rosolem, C. A. (2013). Carbohydrate production and transport in cotton cultivars grown under boron deficiency. Scientia Agricola, 70(6), 442–448. DOI

Camacho-Cristóbal, J. J., Martín-Rejano, E. M., Herrera-Rodríguez, M. B., Navarro-Gochicoa, M. T., Rexach, J., & González-Fontes, A. (2015). Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. Journal of Experimental Botany, 66(13), 3831–3840. DOI

Carnier, R., Coscione, A. R., Delaqua, D. Puga, A. P. & de Abreu, C. A. (2022). Jack bean development in multimetal contaminated soil amended with coffee waste-derived biochars. Processes, 10(10), 2157. DOI

Cordeiro, C. F. D. S., Galdi, L. V., Silva, G. R. A., Custodio, C. C., & Echer, F. R. (2024). Boron nutrition improves peanuts yield and seed quality in a low B sandy soil. Revista Brasileira de Ciência Do Solo, 48, e0230043. DOI

Day, S., & Aasim, M. (2020). Role of boron in growth and development of plant: Deficiency and toxicity perspective. In T. Aftab & K. R. Hakeem (Eds.), Plant Micronutrients (pp. 435–453). Springer International Publishing. DOI

Da Silva, R. C., Baird, R., Degryse, F., & McLaughlin, M. J. (2018). Slow and fast‐release boron sources in potash fertilizers: Spatial variability, nutrient dissolution and plant uptake. Soil Science Society of America Journal, 82(6), 1437–1448. DOI

Husna, Tuheteru, F. D. & Arif, A. (2021). Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia. Biodiversitas, 22(9), 3844-3853. DOI

Lakshmipathi, Adiga, J. D., Kalaivanan, D., Muralidhara, B. M., & Preethi, P. (2018). Effect of zinc and boron application on leaf area, photosynthetic pigments, stomatal number and yield of cashew. International Journal of Current Microbiology and Applied Sciences, 7(1), 1786–1795. DOI

Li, M., Zhao, Z., Zhang, Z., Zhang, W., Zhou, J., Xu, F., & Liu, X. (2017). Effect of boron deficiency on anatomical structure and chemical composition of petioles and photosynthesis of leaves in cotton (Gossypium hirsutum L.). Scientific Reports, 7(1), 4420. DOI

Liu, J, Zhang, M., Fan, J., Ding, W., Chen, L., Luo, J, Liu, Y. & Mei, L. (2023). The Synergistic effects of amf inoculation and boron deficiency on the growth and physiology of Camellia oleifera seedlings. Forests, 14(6), 1126. DOI

Mantovani, J. P. M., Calonego, J. C., & Foloni, J. S. S. (2013). Adubação foliar de boro em diferentes estádios fenológicos da cultura do amendoim. Revista Ceres, 60(2), 270–278. DOI

Martín, G. M., Reyes, R & Ramírez, J. F. (2015). Coinoculation of Canavalia ensiformis with rhizobium and arbuscular mycorrhizal fungus in two soils from Cuba. Cultivos Tropicales, 36(2), 22-29. DOI

Meteorology, Climatology and Geophysics Agency, Bogor Climatology Station. (2023). Total rainfall according to month and rain post station 2023 (mm/day). Retrieved from website

Mousavi, S. M., Nejad, S. A. G., Nourgholipour, F. & Zoshkey, S. A. (2022) Agronomic aspects of boron: Fertilizers, agronomical strategy, and interaction with other nutrients. In Boron in Plants and Agriculture (pp. 249–270). Elsevier. DOI

Oliveira, F. É. R., Oliveira, J. M., & Xavier, F. A. S. (2016). Changes in soil organic carbon fractions in response to cover crops in an orange orchard. Revista Brasileira de Ciência Do Solo, 40, e0150105. DOI

Puga, A. P., Abreu, C. A., Melo, L. C. .A. & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93. DOI

Rachaputi, R., Chauhan, Y. S., & Wright, G. C. (2021). Peanut. In Crop Physiology Case Histories for Major Crops (pp. 360–382). Elsevier. DOI

Ruuhola, T., & Lehto, T. (2014). Do ectomycorrhizas affect boron uptake in Betula pendula ? Canadian Journal of Forest Research, 44(9), 1013–1019. DOI

Seabra Júnior, E., Dal-Pozzo, D. M., Feiden, A., Ferreira Santos, R., & Kazue Tokura, L. (2017). Allelopathic effects of jack bean leaf aqueous extract on safflower cultures. Revista Colombiana de Ciencias Hortícolas, 11(2), 435–440. DOI

Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856. DOI

Silva, M., Andrade, S. A. L. & De-Campos, A. B. (2018). Phytoremediation potential of jack bean plant for multi-element contaminated soils from Ribeira valley, Brazil. Clean-Soil Air Water, 46(1700321). DOI

Simó-González, J. E., Rivera-Espinosa, R., Ruiz-Martínez, L. A., Díaz-Roche, G., & Ruiz-Sánchez, M. (2019). Effectiveness of arbuscular mycorrhizal fungi inoculated on Canavalia ensiformis L. in Calcaric Histosol soils. Agronomía Mesoamericana, 395–405. DOI

Simón-Grao, S., Nieves, M., Martínez-Nicolás, J. J., Alfosea-Simón, M., Cámara-Zapata, J. M., Fernández-Zapata, J. C., & García-Sánchez, F. (2019). Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicology and Environmental Safety, 173, 322–330. DOI

Singh, A. L., Jat, R. S., Zala, A., Bariya, H., Kumar, S., Ramakrishna, Y. S., Rangaraju, G., Masih, M. R., Bhanusali, T. B., Vijaykumar, S., Somasundaram, E., & Singh, I. M. (2017). Scaling-up of boron sources for yield and quality of large seeded peanut cultivars under varied agro-ecological conditions in India. Journal of Plant Nutrition, 40(19), 2756–2767. DOI

Vishekaii, Z. R., Soleimani, A., Fallahi., E., Ghasemnezhad, M., & Hasani, A. (2019). The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Scientia Horticulturae, 257, 108689. DOI

Wang, N., Yang, C., Pan, Z., Liu, Y. & Peng, S. (2015) Boron deficiency in woody plants: various responses and tolerance mechanisms. Frontiers in Plant Science, 6. DOI

Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 203–204, 25–32. DOI

Zarea, M. J., Karimi, N., Goltapeh, E. M., & Ghalavand, A. (2011). Effect of cropping systems and arbuscular mycorrhizal fungi on soil microbial activity and root nodule nitrogenase. Journal of the Saudi Society of Agricultural Sciences, 10(2), 109–120. DOI

Zoz, T., Steiner, F., Seidel, E. P., Castagnara, D. D., & Souza, G. E. D. (2016). Foliar application of calcium and boron improves the spike fertily and yield of wheat. Bioscience Journal, 32(4), 873–880. DOI




DOI: http://doi.org/10.17503/agrivita.v47i1.4423

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.