Tackling Coffee Berry Borer (Hypothenemus hampei Ferr.) Challenges: The Science of Ant Colonization, Nest Design, and Food Preferences in Indonesian Coffee Agroecosystems
Abstract
The black ant (Dolichoderus thoracicus) is known as a natural enemy of Hypothenemus hampei Ferr., the Coffee Berry Borer (CBB). The conservation efforts for this natural enemy can be carried out by using ant nest technology with artificial feed. This research explored artificial nesting and feeding methods for black ant colonies in coffee plantations in Jember District, Indonesia, to combat the CBB. Utilizing a Randomized Block Design, the study examines different nest materials and shapes, various artificial feeds, and the influence of environmental factors on ant colony growth. Cocoa leaves are the most effective nesting material, significantly increasing ant populations (11,532 individuals on average) compared to coconut leaves (4,645.83 individuals); no significant impact of nest shape on ant attraction; granulated sugar is the preferred artificial feed. A notable increase in ant populations was observed with a longer nest placement duration of four weeks. Environmental factors, especially humidity and temperature, significantly influence nests' and feed interactions. The study highlights the importance of specific nesting materials and environmental considerations in effective pest management strategies in tropical agriculture, offering a sustainable approach to enhancing coffee plantation productivity.
Keywords
Full Text:
PDFReferences
Abewoy, D. (2022). Impact of Coffee berry borer on Global Coffee Industry. International Journal of Novel Research in Engineering and Science, 9(1), 1-8. https://doi.org/10.1007/s00191-020-00713-4.
Aristizábal, L. F., Bustillo, A. E., & Arthurs, S. P. (2016). Integrated pest management of coffee berry borer: Strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects, 7(1), 1-24. https://doi.org/10.3390/insects7010006.
Aristizábal, L. F., Johnson, M. A., Mariño, Y. A., Bayman, P., & Wright, M. G. (2023). Establishing an Integrated Pest Management Program for Coffee Berry Borer (Hypothenemus hampei) in Hawaii and Puerto Rico Coffee Agroecosystems: Achievements and Challenges. Insects, 14(7), 1-27. https://doi.org/10.3390/insects14070603.
Aristizábal, L. F., Johnson, M., Shriner, S., Hollingsworth, R., Manoukis, N. C., Myers, R., Bayman, P., & Arthurs, S. P. (2017). Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: Current status and prospects. Insects, 8(4), 1-16. https://doi.org/10.3390/insects8040123.
Aristizábal, N., & Metzger, J. P. (2019). Landscape structure regulates pest control provided by ants in sun coffee farms. Journal of Applied Ecology, 56(1), 21–30. https://doi.org/10.1111/1365-2664.13283.
Bolton, B. (1994). Identification Guide to the Ant Genera of the World. Harvard University Press.
Bisseleua, D. H. B., Begoude, D., Tonnang, H., & Vidal, S. (2017). Ant-mediated ecosystem services and disservices on marketable yield in cocoa agroforestry systems. Agriculture, Ecosystems and Environment, 247, 409–417. https://doi.org/10.1016/j.agee.2017.07.004.
Cammaerts, M. C., & Cammaerts, R. (2017). Spatial expectation of food location in an ant on basis of previous food locations (Hymenoptera, Formicidae). Journal of Ethology, 35(1), 83–91. https://doi.org/10.1007/s10164-016-0494-4.
Couper, L. I., Sanders, N. J., Heller, N. E., & Gordon, D. M. (2021). Multiyear drought exacerbates long-term effects of climate on an invasive ant species. Ecology, 102(10), 1-7. https://doi.org/10.1002/ecy.3476.
Cure, J. R., Rodríguez, D., Gutierrez, A. P., & Ponti, L. (2020). The coffee agroecosystem: bio-economic analysis of coffee berry borer control (Hypothenemus hampei). Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-68989-x.
Depa, Ł., Kaszyca-Taszakowska, N., Taszakowski, A., & Kanturski, M. (2020). Ant-induced evolutionary patterns in aphids. Biological Reviews, 95(6), 1574–1589. https://doi.org/10.1111/brv.12629.
Ennis, K. K., & Philpott, S. M. (2017). Strong influences of a dominant, ground-nesting ant on recruitment, and establishment of ant colonies and communities. Biotropica, 49(4), 521–530. https://doi.org/10.1111/btp.12347.
Escobar-Ramírez, S., Grass, I., Armbrecht, I., & Tscharntke, T. (2019). Biological control of the coffee berry borer: Main natural enemies, control success, and landscape influence. Biological Control, 136, 1-17. https://doi.org/10.1016/j.biocontrol.2019.05.011.
Fitriani, F., Arifin, B., & Ismono, H. (2021). Indonesian coffee exports and its relation to global market integration. Journal of Socioeconomics and Development, 4(1), 120. https://doi.org/10.31328/jsed.v4i1.2115.
Frizzo, T. L. M., Souza, L. M., Sujii, E. R., & Togni, P. H. B. (2020). Ants provide biological control on tropical organic farms influenced by local and landscape factors. Biological Control, 151, 104378. https://doi.org/10.1016/j.biocontrol.2020.104378.
Gassa, A., Abdullah, T., & Junaid, M. (2015). The Use of Several Types of Artificial Diet to Increase Population and Aggressive Behavior of Weaver Ants (Oecophylla Smaragdina F.) in Reducing Cocoa Pod Borer Infestation (Conopomorpha Cramerella Sn.). Academic Research International, 6(1), 1-22. https://doi.org/10.3390/su15010780.
Gordon, D. M. (1995). The development of an ant colony's foraging range. Animal Behaviour, 49(3), 649–659. https://doi.org/10.1016/0003-3472(95)80198-7.
Gress, E., & Kaimuddin, M. (2021). Observations of sea anemones (Hexacorallia: Actiniaria) overgrowing black corals (Hexacorallia: Antipatharia). Marine Biodiversity, 51, 45. https://doi.org/10.1007/s12526-021-01184-x.
Infante, F. (2018). Pest Management Strategies against the Coffee Berry Borer (Coleoptera: Curculionidae: Scolytinae). Journal of Agricultural and Food Chemistry 66(21), 5275–5280. https://doi.org/10.1021/acs.jafc.7b04875
Jauharlina, J., Husni, H., Halimursyadah, H., Rizali, A., & Febrian, T. A. (2021). Diversity of ants (Hymenoptera:Formicidae) in organic and conventional Arabica coffee plantations in Aceh Tengah Regency, Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 667(1), 012036. https://doi.org/10.1088/1755-1315/667/1/012036.
Johnson, M. A., & Manoukis, N. C. (2020). Abundance of Coffee berry borer in feral, abandoned and managed coffee on Hawaii Island. Journal of Applied Entomology, 144(10), 920–928. https://doi.org/10.1111/jen.12804.
Khafidhan, A., Widyastuti, R., & Abdoellah, S. (2021). Ant Abundance, identification and relation with cocoa pest attacks under several shade trees. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 37(3), 219–228. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v37i3.474.
Lynegaard, G. K., Offenberg, J., Fast, T. S., Axelsen, J. A., Mwatawala, M. W., & Rwegasira, G. M. (2014). Using insect traps to increase weaver ant (Oecophylla longinoda) prey capture. Journal of Applied Entomology, 138(7), 539–546. https://doi.org/10.1111/jen.12108
Manson, S., Campera, M., Hedger, K., Ahmad, N., Adinda, E., Nijman, V., Budiadi, B., Imron, M. A., Lukmandaru, G., & Nekaris, K. A. I. (2022). The effectiveness of a biopesticide in the reduction of coffee berry borers in coffee plants. Crop Protection, 161, 106075. https://doi.org/10.1016/j.cropro.2022.106075.
McCallum, R. S., McLean, N. L., & Cutler, G. C. (2018). An assessment of artificial nests for cavity-nesting bees (Hymenoptera: Megachilidae) in lowbush blueberry (Ericaceae). Canadian Entomologist, 150(6), 802–812. https://doi.org/10.4039/tce.2018.45.
Morris, J. R., Vandermeer, J., & Perfecto, I. (2015). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS ONE, 10(11), e0142850. https://doi.org/10.1371/journal.pone.0142850.
Mottl, O., Yombai, J., Fayle, T. M., Novotný, V., & Klimeš, P. (2020). Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 52(2), 277–287. https://doi.org/10.1111/btp.12684.
Mulyani, C., Husni, Bakti, D., & Azhar. (2021). Measurement level of incursion cocoa pod borer (Conopomorpha cramerella snella) at community cocoa plantations in East Aceh Regency, Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 667, 012079. https://doi.org/10.1088/1755-1315/667/1/012079.
Nalini, T., & Ambika, S. (2019). Colony Inhabitation of Weaver Ant, Oecophylla Smaragdina Fabricius (Hymenoptera: Formicidae) In Different Plant Hosts and Their Impact on the Yields of Selected Horticultural Crops. Plant Archives, 19(2), 1935-1940. https://doi.org/10.21203/rs.3.rs-2680006/v1.
Plowes, N. J., & Patrock, R. (2000). A field key to the ants (Hymenoptera, Formicidae) found at Brackenridge field laboratories, Austin, Travis County, Texas. Austin (US): Brackenridge Field Laboratories University of Texas.
Rosiana, N., Nurmalina, R., Winandi, R., & Rifin, A. (2017). The Level of Comparative Advantages of World Main Coffee Producers. Buletin Ilmiah Litbang Perdagangan, 11(2), 227-246. https://doi.org/10.30908/bilp.v11i2.274.
Saleh, A., Armaniar, & Ahmad, A. H. (2020). Strategies for controlling cocoa pod borer, Conopomorpha cramerella Snellen, on cocoa farmers in Langkat District, North Sumatra, Indonesia. Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019). International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), Kuta, Bali, Indonesia. https://doi.org/10.2991/absr.k.200513.034
Seidelmann, K., Bienasch, A., & Pröhl, F. (2016). The impact of nest tube dimensions on reproduction parameters in a cavity nesting solitary bee, Osmia bicornis (Hymenoptera: Megachilidae). Apidologie, 47(1), 114–122. https://doi.org/10.1007/s13592-015-0380-z.
Sihombing, A., Rahardja, A. A., & Gabe, R. T. (2020). The Role of Millennial Urban Lifestyles in the Transformation of Kampung Kota in Indonesia. Environment and Urbanization ASIA, 11(1), 155–169. https://doi.org/10.1177/0975425320906288.
Souza, R. F., Anjos, D. V, Carvalho, R., & Del-Claro, K. (2015). Availability of food and nesting-sites as regulatory mechanisms for the recovery of ant diversity after fire disturbance. Sociobiology, 62(1), 1-9. https://doi.org/10.13102/sociobiology.v62i1.1-9.
Subedi, I. P., Budha, P. B., Kunwar, R. M., Charmakar, S., Ulak, S., Pradhan, D. K., Pokharel, Y. P., Velayudhan, S. T., Sathyapala, S., & Animon, I. (2021). Diversity and distribution of forest ants (Hymenoptera: Formicidae) in nepal: Implications for sustainable forest management. Insects, 12(12), 1128. https://doi.org/10.3390/insects12121128.
Wattimena, C., & Latumahina, F. (2023). Identifikasi Hama Yang Menyerang Tanaman Pada Persemaian Kebun Bibit Rakyat Di Desa Liliboi. BIOPENDIX: Jurnal Biologi, Pendidikan dan Terapan, 9(2), 268-280. https://doi.org/10.30598/biopendixvol9issue2page268-280.
Zhou, A. M., Wu, D., Liang, G. W., Lu, Y. Y., & Xu, Y. J. (2015). Effects of Tending by Solenopsis Invicta (Hymenoptera: Formicidae) on the Sugar Composition and Concentration in the Honeydew of an Invasive Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Ethology, 121(5), 492–500. https://doi.org/10.1111/eth.12363.
DOI: http://doi.org/10.17503/agrivita.v46i3.4364
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.