Spodoptera litura F. Immune System Against Exposure to the Biopesticide Mirabilis jalapa L.
Abstract
Synthetic insect repellent contributed to increasing farm products. This research studies the influence of an extract of Mirabilis jalapa. It is a vegetative insect repellent. It was applied to the polyphagous pest's cellular and humoral immune reactions, Spodoptera litura. This study targeted the body's resistant reaction to S. litura at the cellular and humoral tiers after contacting biopesticides from M. jalapa extracts. This research examined the process of cellular counteraction by assessing the varieties of hemocytes employing the ANOVA test and a phagocytosis test using percentages. The function of the humoral-resistant counteraction was assessed by phenoloxidase analysis employing the ANOVA test. The results demonstrated that a 0.2% M. jalapa concentrate solution noticeably affected the numbers of prohemocytes, granular cells, oenocytoid cells, and spherules compared to reference samples (p<0.05). Moreover, sub-lethal levels show noticeable kinds in PO enzyme levels (p<0.05), with a notable improvement after one hour of handling. Phagocytosis, on the other hand, demonstrated a drop in the ratio of phagocytic cells at 0.4% dose concentrations contrasted to the control group, suggesting a hidden impact on the pest's resistant response. This research reveals that the ability of M. jalapa extract as a biopesticide with immunosuppressive effects on S. litura.
Keywords
Full Text:
PDFReferences
Al Mutawa, M. Y., Ayaad, T. H., & Shaurub, E. H. (2020). Hemocyte profile, phagocytosis, and antibacterial activity in response to immune challenge of the date fruit stalk borer, Oryctes elegans. Invertebrate Survival Journal, 17(1), 147-162. website
Amaral, A., Gillot, S., Garrido-Baserba, M., Filali, A., Karpinska, A. M., Plósz, B. G., De Groot, C., Bellandi, G., Nopens, I., Takács, I., Lizarralde, I., Jimenez, J. A., Fiat, J., Rieger, L., Arnell, M., Andersen, M., Jeppsson, U., Rehman, U., Fayolle, Y., … Rosso, D. (2019). Modelling gas–liquid mass transfer in wastewater treatment: When current knowledge needs to encounter engineering practice and vice versa. Water Science and Technology, 80(4), 607–619. DOI
Bakhtawer, & Afsheen, S. (2021). A cross sectional survey of knowledge, attitude and practices related to the use of insecticides among farmers in industrial triangle of Punjab, Pakistan. PLOS ONE, 16(8), e0255454. DOI
Boman, H.G. 1986. Antibacterial immune proteins in insects. Symposia of the Zoological Society of London, 56, 45–58.
Boraschi, D., Alijagic, A., Auguste, M., Barbero, F., Ferrari, E., Hernadi, S., Mayall, C., Michelini, S., Navarro Pacheco, N. I., Prinelli, A., Swart, E., Swartzwelter, B. J., Bastús, N. G., Canesi, L., Drobne, D., Duschl, A., Ewart, M., Horejs‐Hoeck, J., Italiani, P., … Pinsino, A. (2020). Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small, 16(21), 2000598. DOI
Cardoso-Jaime, V., Tikhe, C. V., Dong, S., & Dimopoulos, G. (2022). The role of mosquito hemocytes in viral infections. Viruses, 14(10), 2088. DOI
Charroux, B., & Royet, J. (2009). Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proceedings of the National Academy of Sciences, 106(24), 9797–9802. DOI
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. DOI
Duffield, K. R., Rosales, A. M., Muturi, E. J., Behle, R. W., & Ramirez, J. L. (2023). Increased phenoloxidase activity constitutes the main defense strategy of Trichoplusia ni larvae against fungal entomopathogenic infections. Insects, 14(8), 667. DOI
EFSA Panel on Plant Health (PLH), Bragard, C., Dehnen‐Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas‐Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., … MacLeod, A. (2019). Pest categorisation of Spodoptera litura. EFSA Journal, 17(7), 5765 . DOI
Eleftherianos, I., Heryanto, C., Bassal, T., Zhang, W., Tettamanti, G., & Mohamed, A. (2021). Haemocyte‐mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology, 164(3), 401–432. DOI
Eleftherianos, I., Zhang, W., Heryanto, C., Mohamed, A., Contreras, G., Tettamanti, G., Wink, M., & Bassal, T. (2021). Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. International Journal of Biological Macromolecules, 191, 277–287. DOI
Feng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L., & Sun, J. (2020). Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Frontiers in Immunology, 11, 2030. DOI
Gamal, E., Hassan, A. K., Abdel-Rahman, M. A., Hassan, M. K., & Tawfik, M. M. (2023). Immune responses and bioactive peptides of insect hemolymph. Egyptian Academic Journal of Biological Sciences. A, Entomology, 16(3), 13–25. DOI
Ghosh, E., & Venkatesan, R. (2019). Plant volatiles modulate immune responses of Spodoptera litura. Journal of Chemical Ecology, 45(8), 715–724. DOI
Hamid, H., Nelly, N., Syahrawati, M., Resti, Z., & Arizona, J. (2019). Potential of endophytic bacteria from corn as biopesticide: A biological control of insect pests. Journal of Biopesticides, 12(1), 40-45. DOI
Honarparvar, N., Khanjani, M., Zemek, R., & Bouzari, N. (2018). Susceptibility of sweet and sour cherry cultivars/genotypes to feeding damage caused by Bryobia rubrioculus (Acari: Tetranychidae). Systematic and Applied Acarology, 23(1), 78. DOI
Hu, H., Hu, Q., Weng, Q., & Wang, J. (2024). Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. Pesticide Biochemistry and Physiology, 198, 105704. DOI
Iqbal, T., Ahmed, N., Shahjeer, K., Ahmed, S., Awadh Al-Mutairi, K., Fathy Khater, H., & Fathey Ali, R. (2021). Botanical insecticides and their potential as anti-insect/pests: Are they successful against insects and pests? In H. Abdel Farag El-Shafie (Ed.), Global Decline of Insects. IntechOpen. DOI
Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: Formulants, distribution pathways and effects on human health – a review. Toxicology Reports, 8, 1179–1192. DOI
Khan, M. A., Amin, A., Farid, A., Ullah, A., Waris, A., Shinwari, K., Hussain, Y., Alsharif, K. F., Alzahrani, K. J., & Khan, H. (2022). Recent advances in genomics-based approaches for the development of intracellular bacterial pathogen vaccines. Pharmaceutics, 15(1), 152. DOI
Kumar, D. (2019). Chapter 4—Defense Strategies in Plants against Insect Herbivores. Advances in Agricultural Entomology; Kosmos Publishers: Stuttgart, Germany, 7, 67-119.
Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Fertilizers & Pesticides, 06(02). DOI
Kwon, H., Hall, D. R., & Smith, R. C. (2021). Prostaglandin E2 signaling mediates oenocytoid immune cell function and lysis, limiting bacteria and Plasmodium oocyst survival in Anopheles gambiae. Frontiers in Immunology, 12, 680020. DOI
Kwon, H., Mohammed, M., Franzén, O., Ankarklev, J., & Smith, R. C. (2021). Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife, 10, e66192. DOI
Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L., & Huang, Q.-Y. (2019). The mechanisms of social immunity against fungal infections in eusocial insects. Toxins, 11(5), 244. DOI
Marieshwari, B. N., Bhuvaragavan, S., Sruthi, K., Mullainadhan, P., & Janarthanan, S. (2023). Insect phenoloxidase and its diverse roles: Melanogenesis and beyond. Journal of Comparative Physiology B, 193(1), 1–23. DOI
Maulina, D., Sumitro, S. B., Amin, M., & Lestari, S. R. (2019). Lectin protein Spodoptera litura activity after exposured by biopesticide from Mirabilis jalapa. International Journal of Applied Biology, 3(1), 62. DOI
Meinke, L. J., Souza, D., & Siegfried, B. D. (2021). The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, Leconte: History, field-evolved resistance, and associated mechanisms. Insects, 12(2), 112. DOI
Nunes, C., Sucena, É., & Koyama, T. (2021). Endocrine regulation of immunity in insects. The FEBS Journal, 288(13), 3928–3947. DOI
Oliveira, N. C. D., Suzukawa, A. K., Pereira, C. B., Santos, H. V., Hanel, A., Albuquerque, F. A. D., & Scapim, C. A. (2018). Popcorn genotypes resistance to fall armyworm. Ciência Rural, 48(2). DOI
Opare, L. O., Meister, H., Holm, S., Kaasik, A., & Esperk, T. (2023). High larval densities and high temperatures lead to a stronger immune response in the black soldier fly. Journal of Insects as Food and Feed, 9(9), 1177–1186. DOI
Qin, Y., Liu, X., Peng, G., Xia, Y., & Cao, Y. (2023). Recent advancements in pathogenic mechanisms, applications and strategies for entomopathogenic fungi in mosquito biocontrol. Journal of Fungi, 9(7), 746. DOI
Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian Journal of Microbiology, 60(2), 125–138. DOI
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. DOI
Salcedo-Porras, N., & Lowenberger, C. (2021). The immune system of triatomines. In A. Guarneri & M. Lorenzo (Eds.), Triatominae—The Biology of Chagas Disease Vectors (Vol. 5, pp. 307–344). Springer International Publishing. DOI
Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. Toxics, 9(8), 177. DOI
Sanda, N. B., & Hou, Y. (2023). The symbiotic bacteria—Xenorhabdus nematophila All and Photorhabdus luminescens H06 strongly affected the phenoloxidase activation of nipa palm hispid, Octodonta nipae (Coleoptera: Chrysomelidae) larvae. Pathogens, 12(4), 506. DOI
Seth, R. K., & Sharma, V. P. (2001). Inherited sterility by substerilizing radiation in Spodoptera litura (Lepidoptera: Noctuidae): Bioefficacy and potential for pest suppression. The Florida Entomologist, 84(2), 183. DOI
Sheehan, G., Farrell, G., & Kavanagh, K. (2020). Immune priming: The secret weapon of the insect world. Virulence, 11(1), 238–246. DOI
Stanley-Samuelson, D. W., Jensen, E., Nickerson, K. W., Tiebel, K., Ogg, C. L., & Howard, R. W. (1991). Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences, 88(3), 1064–1068. DOI
Stejskal, V., Vendl, T., Aulicky, R., & Athanassiou, C. (2021). Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects, 12(7), 590. DOI
Suryani, A. I., Hariani, N., Majid, A. F., & Amalia, D. N. (2020). Histological changes in the midgut of Spodoptera litura larvae exposured by the extract of Mirabilis jalapa leaves. IOP Conference Series: Earth and Environmental Science, 484(1), 012107. DOI
Tsakas, S., & Marmaras, V. J. (2010). Insect immunity and its signalling: an overview. Invertebrate Survival Journal, 7(2), 228-238. website
Vommaro, M. L., Giulianini, P. G., & Giglio, A. (2021). Pendimethalin-based herbicide impairs cellular immune response and haemocyte morphology in a beneficial ground beetle. Journal of Insect Physiology, 131, 104236. DOI
Yu, H., Li, J., Wu, G., Tang, Q., Duan, X., Liu, Q., Lan, M., Zhao, Y., Hao, X., Qin, X., & Ding, X. (2022). Antifeedant mechanism of Dodonaea viscosa saponin A isolated from the seeds of Dodonaea viscosa. Molecules, 27(14), 4464. DOI
Zhang, S., Shu, J., Xue, H., Zhang, W., Zhang, Y., Liu, Y., Fang, L., Wang, Y., & Wang, H. (2020). The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems, 5(2), e00692-19. DOI
Zhang, W., Tettamanti, G., Bassal, T., Heryanto, C., Eleftherianos, I., & Mohamed, A. (2021). Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cellular Signalling, 83, 110003. DOI
Zhou, L., Ma, L., Liu, L., Sun, S., Jing, X., & Lu, Z. (2023). The effects of diet on the immune responses of the oriental armyworm Mythimna separata. Insects, 14(8), 685. DOI
DOI: http://doi.org/10.17503/agrivita.v47i1.4351
Copyright (c) 2025 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.