Spodoptera litura F. Immune System Against Exposure to the Biopesticide Mirabilis jalapa L.

Dina Maulina, Sutiman Bambang Sumitro, Sri Rahayu Lestari, Dominikus Djago Djoa

Abstract


Synthetic insect repellent contributed to increasing farm products. This research studies the influence of an extract of Mirabilis jalapa. It is a vegetative insect repellent. It was applied to the polyphagous pest's cellular and humoral immune reactions, Spodoptera litura. This study targeted the body's resistant reaction to S. litura at the cellular and humoral tiers after contacting biopesticides from M. jalapa extracts. This research examined the process of cellular counteraction by assessing the varieties of hemocytes employing the ANOVA test and a phagocytosis test using percentages. The function of the humoral-resistant counteraction was assessed by phenoloxidase analysis employing the ANOVA test. The results demonstrated that a 0.2% M. jalapa concentrate solution noticeably affected the numbers of prohemocytes, granular cells, oenocytoid cells, and spherules compared to reference samples (p<0.05). Moreover, sub-lethal levels show noticeable kinds in PO enzyme levels (p<0.05), with a notable improvement after one hour of handling. Phagocytosis, on the other hand, demonstrated a drop in the ratio of phagocytic cells at 0.4% dose concentrations contrasted to the control group, suggesting a hidden impact on the pest's resistant response. This research reveals that the ability of M. jalapa extract as a biopesticide with immunosuppressive effects on S. litura.


Keywords


Hemocyte; Mirabilis jalapa; Phagocytosis activity; Phenoloxidase; Spodoptera litura

Full Text:

PDF

References


Al Mutawa, M. Y., Ayaad, T. H., & Shaurub, E. H. (2020). Hemocyte profile, phagocytosis, and antibacterial activity in response to immune challenge of the date fruit stalk borer, Oryctes elegans. Invertebrate Survival Journal, 17(1), 147-162. website

Amaral, A., Gillot, S., Garrido-Baserba, M., Filali, A., Karpinska, A. M., Plósz, B. G., De Groot, C., Bellandi, G., Nopens, I., Takács, I., Lizarralde, I., Jimenez, J. A., Fiat, J., Rieger, L., Arnell, M., Andersen, M., Jeppsson, U., Rehman, U., Fayolle, Y., … Rosso, D. (2019). Modelling gas–liquid mass transfer in wastewater treatment: When current knowledge needs to encounter engineering practice and vice versa. Water Science and Technology, 80(4), 607–619. DOI

Bakhtawer, & Afsheen, S. (2021). A cross sectional survey of knowledge, attitude and practices related to the use of insecticides among farmers in industrial triangle of Punjab, Pakistan. PLOS ONE, 16(8), e0255454. DOI

Boman, H.G. 1986. Antibacterial immune proteins in insects. Symposia of the Zoological Society of London, 56, 45–58.

Boraschi, D., Alijagic, A., Auguste, M., Barbero, F., Ferrari, E., Hernadi, S., Mayall, C., Michelini, S., Navarro Pacheco, N. I., Prinelli, A., Swart, E., Swartzwelter, B. J., Bastús, N. G., Canesi, L., Drobne, D., Duschl, A., Ewart, M., Horejs‐Hoeck, J., Italiani, P., … Pinsino, A. (2020). Addressing nanomaterial immunosafety by evaluating innate immunity across living species. Small, 16(21), 2000598. DOI

Cardoso-Jaime, V., Tikhe, C. V., Dong, S., & Dimopoulos, G. (2022). The role of mosquito hemocytes in viral infections. Viruses, 14(10), 2088. DOI

Charroux, B., & Royet, J. (2009). Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proceedings of the National Academy of Sciences, 106(24), 9797–9802. DOI

Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. DOI

Duffield, K. R., Rosales, A. M., Muturi, E. J., Behle, R. W., & Ramirez, J. L. (2023). Increased phenoloxidase activity constitutes the main defense strategy of Trichoplusia ni larvae against fungal entomopathogenic infections. Insects, 14(8), 667. DOI

EFSA Panel on Plant Health (PLH), Bragard, C., Dehnen‐Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas‐Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L., … MacLeod, A. (2019). Pest categorisation of Spodoptera litura. EFSA Journal, 17(7), 5765 . DOI

Eleftherianos, I., Heryanto, C., Bassal, T., Zhang, W., Tettamanti, G., & Mohamed, A. (2021). Haemocyte‐mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology, 164(3), 401–432. DOI

Eleftherianos, I., Zhang, W., Heryanto, C., Mohamed, A., Contreras, G., Tettamanti, G., Wink, M., & Bassal, T. (2021). Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. International Journal of Biological Macromolecules, 191, 277–287. DOI

Feng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L., & Sun, J. (2020). Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Frontiers in Immunology, 11, 2030. DOI

Gamal, E., Hassan, A. K., Abdel-Rahman, M. A., Hassan, M. K., & Tawfik, M. M. (2023). Immune responses and bioactive peptides of insect hemolymph. Egyptian Academic Journal of Biological Sciences. A, Entomology, 16(3), 13–25. DOI

Ghosh, E., & Venkatesan, R. (2019). Plant volatiles modulate immune responses of Spodoptera litura. Journal of Chemical Ecology, 45(8), 715–724. DOI

Hamid, H., Nelly, N., Syahrawati, M., Resti, Z., & Arizona, J. (2019). Potential of endophytic bacteria from corn as biopesticide: A biological control of insect pests. Journal of Biopesticides, 12(1), 40-45. DOI

Honarparvar, N., Khanjani, M., Zemek, R., & Bouzari, N. (2018). Susceptibility of sweet and sour cherry cultivars/genotypes to feeding damage caused by Bryobia rubrioculus (Acari: Tetranychidae). Systematic and Applied Acarology, 23(1), 78. DOI

Hu, H., Hu, Q., Weng, Q., & Wang, J. (2024). Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. Pesticide Biochemistry and Physiology, 198, 105704. DOI

Iqbal, T., Ahmed, N., Shahjeer, K., Ahmed, S., Awadh Al-Mutairi, K., Fathy Khater, H., & Fathey Ali, R. (2021). Botanical insecticides and their potential as anti-insect/pests: Are they successful against insects and pests? In H. Abdel Farag El-Shafie (Ed.), Global Decline of Insects. IntechOpen. DOI

Kalyabina, V. P., Esimbekova, E. N., Kopylova, K. V., & Kratasyuk, V. A. (2021). Pesticides: Formulants, distribution pathways and effects on human health – a review. Toxicology Reports, 8, 1179–1192. DOI

Khan, M. A., Amin, A., Farid, A., Ullah, A., Waris, A., Shinwari, K., Hussain, Y., Alsharif, K. F., Alzahrani, K. J., & Khan, H. (2022). Recent advances in genomics-based approaches for the development of intracellular bacterial pathogen vaccines. Pharmaceutics, 15(1), 152. DOI

Kumar, D. (2019). Chapter 4—Defense Strategies in Plants against Insect Herbivores. Advances in Agricultural Entomology; Kosmos Publishers: Stuttgart, Germany, 7, 67-119.

Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Fertilizers & Pesticides, 06(02). DOI

Kwon, H., Hall, D. R., & Smith, R. C. (2021). Prostaglandin E2 signaling mediates oenocytoid immune cell function and lysis, limiting bacteria and Plasmodium oocyst survival in Anopheles gambiae. Frontiers in Immunology, 12, 680020. DOI

Kwon, H., Mohammed, M., Franzén, O., Ankarklev, J., & Smith, R. C. (2021). Single-cell analysis of mosquito hemocytes identifies signatures of immune cell subtypes and cell differentiation. eLife, 10, e66192. DOI

Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L., & Huang, Q.-Y. (2019). The mechanisms of social immunity against fungal infections in eusocial insects. Toxins, 11(5), 244. DOI

Marieshwari, B. N., Bhuvaragavan, S., Sruthi, K., Mullainadhan, P., & Janarthanan, S. (2023). Insect phenoloxidase and its diverse roles: Melanogenesis and beyond. Journal of Comparative Physiology B, 193(1), 1–23. DOI

Maulina, D., Sumitro, S. B., Amin, M., & Lestari, S. R. (2019). Lectin protein Spodoptera litura activity after exposured by biopesticide from Mirabilis jalapa. International Journal of Applied Biology, 3(1), 62. DOI

Meinke, L. J., Souza, D., & Siegfried, B. D. (2021). The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, Leconte: History, field-evolved resistance, and associated mechanisms. Insects, 12(2), 112. DOI

Nunes, C., Sucena, É., & Koyama, T. (2021). Endocrine regulation of immunity in insects. The FEBS Journal, 288(13), 3928–3947. DOI

Oliveira, N. C. D., Suzukawa, A. K., Pereira, C. B., Santos, H. V., Hanel, A., Albuquerque, F. A. D., & Scapim, C. A. (2018). Popcorn genotypes resistance to fall armyworm. Ciência Rural, 48(2). DOI

Opare, L. O., Meister, H., Holm, S., Kaasik, A., & Esperk, T. (2023). High larval densities and high temperatures lead to a stronger immune response in the black soldier fly. Journal of Insects as Food and Feed, 9(9), 1177–1186. DOI

Qin, Y., Liu, X., Peng, G., Xia, Y., & Cao, Y. (2023). Recent advancements in pathogenic mechanisms, applications and strategies for entomopathogenic fungi in mosquito biocontrol. Journal of Fungi, 9(7), 746. DOI

Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian Journal of Microbiology, 60(2), 125–138. DOI

Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. DOI

Salcedo-Porras, N., & Lowenberger, C. (2021). The immune system of triatomines. In A. Guarneri & M. Lorenzo (Eds.), Triatominae—The Biology of Chagas Disease Vectors (Vol. 5, pp. 307–344). Springer International Publishing. DOI

Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. Toxics, 9(8), 177. DOI

Sanda, N. B., & Hou, Y. (2023). The symbiotic bacteria—Xenorhabdus nematophila All and Photorhabdus luminescens H06 strongly affected the phenoloxidase activation of nipa palm hispid, Octodonta nipae (Coleoptera: Chrysomelidae) larvae. Pathogens, 12(4), 506. DOI

Seth, R. K., & Sharma, V. P. (2001). Inherited sterility by substerilizing radiation in Spodoptera litura (Lepidoptera: Noctuidae): Bioefficacy and potential for pest suppression. The Florida Entomologist, 84(2), 183. DOI

Sheehan, G., Farrell, G., & Kavanagh, K. (2020). Immune priming: The secret weapon of the insect world. Virulence, 11(1), 238–246. DOI

Stanley-Samuelson, D. W., Jensen, E., Nickerson, K. W., Tiebel, K., Ogg, C. L., & Howard, R. W. (1991). Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences, 88(3), 1064–1068. DOI

Stejskal, V., Vendl, T., Aulicky, R., & Athanassiou, C. (2021). Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects, 12(7), 590. DOI

Suryani, A. I., Hariani, N., Majid, A. F., & Amalia, D. N. (2020). Histological changes in the midgut of Spodoptera litura larvae exposured by the extract of Mirabilis jalapa leaves. IOP Conference Series: Earth and Environmental Science, 484(1), 012107. DOI

Tsakas, S., & Marmaras, V. J. (2010). Insect immunity and its signalling: an overview. Invertebrate Survival Journal, 7(2), 228-238. website

Vommaro, M. L., Giulianini, P. G., & Giglio, A. (2021). Pendimethalin-based herbicide impairs cellular immune response and haemocyte morphology in a beneficial ground beetle. Journal of Insect Physiology, 131, 104236. DOI

Yu, H., Li, J., Wu, G., Tang, Q., Duan, X., Liu, Q., Lan, M., Zhao, Y., Hao, X., Qin, X., & Ding, X. (2022). Antifeedant mechanism of Dodonaea viscosa saponin A isolated from the seeds of Dodonaea viscosa. Molecules, 27(14), 4464. DOI

Zhang, S., Shu, J., Xue, H., Zhang, W., Zhang, Y., Liu, Y., Fang, L., Wang, Y., & Wang, H. (2020). The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems, 5(2), e00692-19. DOI

Zhang, W., Tettamanti, G., Bassal, T., Heryanto, C., Eleftherianos, I., & Mohamed, A. (2021). Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cellular Signalling, 83, 110003. DOI

Zhou, L., Ma, L., Liu, L., Sun, S., Jing, X., & Lu, Z. (2023). The effects of diet on the immune responses of the oriental armyworm Mythimna separata. Insects, 14(8), 685. DOI




DOI: http://doi.org/10.17503/agrivita.v47i1.4351

Copyright (c) 2025 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.