Long-Term Biofertilizers and Chemical Fertilizer Use on Selected Peat Soil Properties of Oil Palm Plantation
Abstract
Keywords
Full Text:
PDFReferences
Agus, C., Ilfana, Z. R., Azmi, F. F., Rachmanadi, D., Widiyatno, Wulandari, D., Santosa, P. B., Harun, M. K., Yuwati, T. W. & Lestari, T. (2020). The effect of tropical peat land-use changes on plant diversity and soil properties. International Journal of Environmental Science and Technology, 17, 1703-1712. DOI
Ajeng, A. A., Abdullah, R., Malek, M. A., Chew, K. W., Ho, Y. C., Ling, T. C., Lau, B. F. & Show, P. L. (2020). The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions. Processes, 8, 1681. DOI
Asoegwu, C. R., Awuchi, C. G., Nelson, K., C. T., Orji, C. G., Nwosu, O. U., Egbufor, U. C., & Awuchi, C. G. (2020). A review on the role of biofertilizers in reducing soil pollution and increasing soil nutrients. Himalayan Journal of Agriculture, 1(1). website
Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1-8. website
Coleman-Derr, D., & Tringe, S. G. (2014). Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers In Microbiology, 5, 283. DOI
Ding, X., Han, X., Liang, Y., Qiao, Y., Li, L., & Li, N. (2012). Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soil and Tillage Research, 122, 36-41. DOI
González Jiménez, J. L., Healy, M. G., & Daly, K. (2019). Effects of fertiliser on phosphorus pools in soils with contrasting organic matter content: A fractionation and path analysis study. Geoderma, 338, 128–135. DOI
Gusmayanti, E., Anshari, G. Z., Pramulya, M., & Ruliyansyah, A. (2019). CO2 fluxes from drained tropical peatland used for oil palm plantation in relation to peat characteristics and crop age after planting. Biodiversitas, 20(6), 1650-1657. DOI
Hashim, S. A., Teh, C. B. S., & Ahmed, O. H. (2019). Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malaysian Journal of Soil Science, 23, 13-30. PDF
Inubushi, K., Otake, S., Furukawa, Y., Shibasaki, N., Ali, M., Itang, A. M., & Tsuruta, H. (2005). Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands. Nutrient Cycling in Agroecosystems, 71, 93-99. DOI
Kassim, N. Q. B., & Yaacob, A. (2019). Nutrients dynamics in peat soil: Influence of fluctuating water table. IOP Conference Series: Earth and Environmental Science, 327(1), 012024. DOI
Kassim, N. Q. B., & Yaacob, A. (2020). Quantification of Soil N, P and K balance in peat soils: Influence of fluctuating water table. IOP Conference Series: Materials Science and Engineering, 917(1), 012018. DOI
Kubheka, B. P., Laing, M. D., & Yobo, K. S. (2020). Combinations of a biofertilizer with micro-dosed chemical fertilizers increased yield of maize in a high acid saturated soil. Rhizosphere, 13, 100189. DOI
Kumar, P., Brar, S., Pandove, G., & Aulakh, C. (2021). Bioformulation of Azotobacter spp. and Streptomyces badius on the productivity, economics, and energetics of wheat (Triticum aestivum L.). Energy, 232, 120868. DOI
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. DOI
Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking crop nutrition in times of modern microbiology: Innovative biofertilizer technologies. Frontiers in Sustainable Food Systems, 5, 606815. DOI
MPOB. (2022). Malaysian Oil Palm Statistics 2021 41st Edition. Malaysian Palm Oil Board, Kuala Lumpur.
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13, 1868. DOI
Othman, N. M. I., Othman, R., Zuan, A. T. K., Shamsuddin, A. S., Zaman, N. B. K., Sari, N. A., & Panhwar, Q. A. (2022). Isolation, characterization, and identification of zinc-solubilizing bacteria (ZSB) from wetland rice fields in Peninsular Malaysia. Agriculture, 12, 1823. DOI
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical Fertilizers and Their Impact on Soil Health in Microbiota and Biofertilizers, Vol 2 (pp. 1–20). Springer International Publishing. DOI
Rao, N. S. S. (1982). Biofertilizers. Interdisciplinary Science Reviews, 7(3), 220–229. DOI
Schmidt, J. E., & Gaudin, A. C. M. (2018). What is the agronomic potential of biofertilizers for maize? A meta-analysis. FEMS Microbiology Ecology, 94, fiy094. DOI
Shi, Y., Zhang, X., Wang, Z., Xu, Z., He, C., Sheng, L., Liu, H. & Wang, Z. (2021). Shift in nitrogen transformation in peatland soil by nitrogen inputs. Science of the Total Environment, 764, 142924. DOI
Suhag, M. (2016). Potential of biofertilizers to replace chemical fertilizers. International Advanced Research Journal in Science, Engineering and Technology, 3(5), 163-167. PDF
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hamonts, K., Anderson, I. C., & Singh, B. K. (2017). Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biology and Biochemistry, 111, 10-14. DOI
Wetlands International. (2010). A quick scan of peatlands in Malaysia. Wetlands International Malaysia: Petaling Jaya, Malaysia. 74 pp.
Zainuddin, N., Keni, M. F., Ibrahim, S. A. S., & Masri, M. M. M. (2022). Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology, 39, 102237. DOI
DOI: http://doi.org/10.17503/agrivita.v46i2.4305
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.