Morpho-Physiological Response of Indonesian Rice (Oryza sativa L.) Under Combination Heat and Drought Stress
Abstract
Heat stress and drought are combination of stresses that have the potential to occur simultaneously in extreme temperature changes. Rice is the main food crop in Indonesia and includes plants that are sensitive to stress. Indonesian local rice is believed to have high adaptability to Indonesian's geographical conditions, however there is lack of updated data to explain this information. This study attempts to determine the level of adaptability or resistance of Indonesian local rice to a combination of heat stress and drought. The results showed that the 24 Indonesian local rice accessions were divided into 3 resistance classes. The high resistance class is Sintha, the resistance classes are Gajah Mungkur, Kalimutu, Kapuas, Sukamandi, Seratus Malam, Cabacu, Bengawan Solo and Cisokan, as well as the medium resistance classes Jatiluhur, Batang Ombilin, Mahakam, Nona Bokra, Pucuk, Bengawan, Rojolele, IR64, Barumun, Cisadane, Memberamo, Cibodas, Gilirang, Fatmawati and Ciherang.
Keywords
Full Text:
PDFReferences
Atkinson, N. J., & Urwin, P. E. (2012). The Interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523–3544. https://doi.org/10.1093/jxb/ers100
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168. https://doi.org/10.1071/AR05069
BMKG; Meteorology Climatology and Geophysics Agency. (2022). Analisis Laju Perubahan Suhu Udara Rata-Rata Tahunan Periode 1981-2022. https://www.bmkg.go.id/iklim/?p=analisis-laju-perubahan-suhu-udara
Chaniago, N., Suliansyah, I., Chaniago, I., & Rozen, N. (2021). Identification of Local Rice Genotypes from Deli Serdang, North Sumatera, Indonesia to Drought Stress Condition. Journal of Applied Agricultural Science and Technology, 5(1), 13-27. https://doi.org/10.32530/jaast.v5i1.4
Chen, Z., Wang, Z., Yang, Y., Li, M., & Xu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1-9. https://doi.org/10.1016/j.scienta.2017.10.004
Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66–76. https://doi.org/10.1111/ppl.13203
De Boeck, H. J., Bassin, S., Verlinden, M., Zeiter, M., & Hiltbrunner, E. (2016). Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist, 209(2), 531–541. https://doi.org/10.1111/nph.13601
Fahad, S., Hussain, S., Saud, S., Hassan, S., Ihsan, Z., Shah, A. N., Wu, C., Yousaf, M., Nasim, W., Alharby, H., Alghabari, F., & Huang, J. (2016). Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Frontiers in Plant Science, 7, 1250. https://doi.org/10.3389/fpls.2016.01250
Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R., Rosa, E. A. S., António, C., & Trindade, H. (2017). Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Frontiers in Plant Science, 8, 586. https://doi.org/10.3389/fpls.2017.00586
Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9, 3890. https://doi.org/10.1038/s41598-019-40362-7
Kilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. V. K., Kusolwa, P., & Rathinasabapathi, B. (2018). Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 9, 1578. https://doi.org/10.3389/fpls.2018.01578
Lamers, J., van der Meer, T., & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464
Manalu, V. M. P., Wirnas, D., & Sudarsono. (2017). Karakter Seleksi pada Generasi Awal untuk Adaptasi Padi terhadap Cekaman Suhu Tinggi. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(2), 109. https://doi.org/10.24831/jai.v45i2.12938
Perdomo, J. A., Conesa, M. À., Medrano, H., Ribas-Carbó, M., & Galmés, J. (2015). Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiologia Plantarum, 155(2), 149–165. https://doi.org/10.1111/ppl.12303
Ridha, R. (2019). Viabilitas Polen Dan Akumulasi Cadangan Makanan Dalam Biji Padi Akibat Cekaman Suhu Tinggi. Jurnal Penelitian Agrosamudra, 6(1), 8–19. https://doi.org/10.33059/jupas.v6i1.1501
Rondhi, M., Khasan, A. F., Mori, Y., & Kondo, T. (2019). Assessing the role of the perceived impact of climate change on national adaptation policy: The case of rice farming in Indonesia. Land, 8(5), 81. https://doi.org/10.3390/land8050081
Ruminta, Handoko, & Nurmala, T. (2018). Indikasi perubahan iklim dan dampaknya terhadap produksi padi di Indonesia. Jurnal Agro, 5(1), 48–60. https://doi.org/10.15575/1607
Sarma, B., Kashtoh, H., Lama Tamang, T., Bhattacharyya, P. N., Mohanta, Y. K., & Baek, K. H. (2023). Abiotic stress in rice: Visiting the physiological response and its tolerance mechanisms. Plants, 12(23), 3948. https://doi.org/10.3390/plants12233948
Singh, A., Rajput, V. D., Sharma, R., Ghazaryan, K., & Minkina, T. (2023). Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 235, 116585. https://doi.org/10.1016/j.envres.2023.116585
Sopandie, D. (2014). Fisiologi Adaptasi Tanaman terhadap Cekaman Abiotik pada Agroekosistem Tropika. IPB Press. http://repository.ipb.ac.id/handle/123456789/81229
Sugiyono. (2014). Statistika untuk Penelitian. Alfabeta, Bandung.
Vescio, R., Abenavoli, M. R., & Sorgonà, A. (2021). Single and combined abiotic stress in maize root morphology. Plants, 10, 5. https://doi.org/10.3390/plants10010005
Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & El Sabagh, A. (2021). Evaluation of fourteen bread wheat (Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability, 13(9), 4799. https://doi.org/10.3390/su13094799
Xu, Y., Chu, C., & Yao, S. (2021). The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal, 9(5), 963–976. https://doi.org/10.1016/j.cj.2021.02.011
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7(3), 50. https://doi.org/10.3390/horticulturae7030050
Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9(1), 3742. https://doi.org/10.1038/s41598-019-40161-0
Yoshida, S. (1981). Fundamentals of Rice Crop Science. Fundamentals of Rice Crop Science, 65–109. https://books.google.com/books/about/Fundamentals_of_Rice_Crop_Science.html?id=323XxM076SsC
Zhao, J., Lu, Z., Wang, L., & Jin, B. (2021). Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 22, 117. https://doi.org/10.3390/ijms22010117
DOI: http://doi.org/10.17503/agrivita.v46i3.4238
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.