Morpho-Physiological Response of Indonesian Rice (Oryza sativa L.) Under Combination Heat and Drought Stress

Sri Hartatik, Dewi Kusuma Wardani, Eviyanti Choirunnisa, Sholeh Avivi, Agung Nugroho Puspito, Kyung Min Kim, Mohammad Ubaidillah

Abstract


Heat stress and drought are combination of stresses that have the potential to occur simultaneously in extreme temperature changes. Rice is the main food crop in Indonesia and includes plants that are sensitive to stress. Indonesian local rice is believed to have high adaptability to Indonesian's geographical conditions, however there is lack of updated data to explain this information. This study attempts to determine the level of adaptability or resistance of Indonesian local rice to a combination of heat stress and drought. The results showed that the 24 Indonesian local rice accessions were divided into 3 resistance classes. The high resistance class is Sintha, the resistance classes are Gajah Mungkur, Kalimutu, Kapuas, Sukamandi, Seratus Malam, Cabacu, Bengawan Solo and Cisokan, as well as the medium resistance classes Jatiluhur, Batang Ombilin, Mahakam, Nona Bokra, Pucuk, Bengawan, Rojolele, IR64, Barumun, Cisadane, Memberamo, Cibodas, Gilirang, Fatmawati and Ciherang.


Keywords


Heat and Drought Stress; High Resistance; Local Rice; Medium Resistance; Resistance

Full Text:

PDF

References


Atkinson, N. J., & Urwin, P. E. (2012). The Interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523–3544. DOI

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168. DOI

BMKG; Meteorology Climatology and Geophysics Agency. (2022). Analisis Laju Perubahan Suhu Udara Rata-Rata Tahunan Periode 1981-2022. website

Chaniago, N., Suliansyah, I., Chaniago, I., & Rozen, N. (2021). Identification of Local Rice Genotypes from Deli Serdang, North Sumatera, Indonesia to Drought Stress Condition. Journal of Applied Agricultural Science and Technology, 5(1), 13-27. DOI

Chen, Z., Wang, Z., Yang, Y., Li, M., & Xu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1-9. DOI

Cohen, I., Zandalinas, S. I., Huck, C., Fritschi, F. B., & Mittler, R. (2021). Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171(1), 66–76. DOI

De Boeck, H. J., Bassin, S., Verlinden, M., Zeiter, M., & Hiltbrunner, E. (2016). Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist, 209(2), 531–541. DOI

Fahad, S., Hussain, S., Saud, S., Hassan, S., Ihsan, Z., Shah, A. N., Wu, C., Yousaf, M., Nasim, W., Alharby, H., Alghabari, F., & Huang, J. (2016). Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Frontiers in Plant Science, 7, 1250. DOI

Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R., Rosa, E. A. S., António, C., & Trindade, H. (2017). Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Frontiers in Plant Science, 8, 586. DOI

Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9, 3890. DOI

Kilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. V. K., Kusolwa, P., & Rathinasabapathi, B. (2018). Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 9, 1578. DOI

Lamers, J., van der Meer, T., & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. DOI

Manalu, V. M. P., Wirnas, D., & Sudarsono. (2017). Karakter Seleksi pada Generasi Awal untuk Adaptasi Padi terhadap Cekaman Suhu Tinggi. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(2), 109. DOI

Perdomo, J. A., Conesa, M. À., Medrano, H., Ribas-Carbó, M., & Galmés, J. (2015). Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiologia Plantarum, 155(2), 149–165. DOI

Ridha, R. (2019). Viabilitas Polen Dan Akumulasi Cadangan Makanan Dalam Biji Padi Akibat Cekaman Suhu Tinggi. Jurnal Penelitian Agrosamudra, 6(1), 8–19. DOI

Rondhi, M., Khasan, A. F., Mori, Y., & Kondo, T. (2019). Assessing the role of the perceived impact of climate change on national adaptation policy: The case of rice farming in Indonesia. Land, 8(5), 81. DOI

Ruminta, Handoko, & Nurmala, T. (2018). Indikasi perubahan iklim dan dampaknya terhadap produksi padi di Indonesia. Jurnal Agro, 5(1), 48–60. DOI

Sarma, B., Kashtoh, H., Lama Tamang, T., Bhattacharyya, P. N., Mohanta, Y. K., & Baek, K. H. (2023). Abiotic stress in rice: Visiting the physiological response and its tolerance mechanisms. Plants, 12(23), 3948. DOI

Singh, A., Rajput, V. D., Sharma, R., Ghazaryan, K., & Minkina, T. (2023). Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 235, 116585. DOI

Sopandie, D. (2014). Fisiologi Adaptasi Tanaman terhadap Cekaman Abiotik pada Agroekosistem Tropika. IPB Press. website

Sugiyono. (2014). Statistika untuk Penelitian. Alfabeta, Bandung.

Vescio, R., Abenavoli, M. R., & Sorgonà, A. (2021). Single and combined abiotic stress in maize root morphology. Plants, 10, 5. DOI

Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & El Sabagh, A. (2021). Evaluation of fourteen bread wheat (Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability, 13(9), 4799. DOI

Xu, Y., Chu, C., & Yao, S. (2021). The impact of high-temperature stress on rice: Challenges and solutions. The Crop Journal, 9(5), 963–976. DOI

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7(3), 50. DOI

Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9(1), 3742. DOI

Yoshida, S. (1981). Fundamentals of Rice Crop Science. Fundamentals of Rice Crop Science, 65–109. website

Zhao, J., Lu, Z., Wang, L., & Jin, B. (2021). Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 22, 117. DOI




DOI: http://doi.org/10.17503/agrivita.v46i3.4238

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.