The Impact of Pruning Intensities and Non-Nutrient Ameliorants on Brazilian Spinach Growth in Floating Cultivation System

Strayker Ali Muda, Benyamin Lakitan, Andi Wijaya, Susilawati Susilawati

Abstract


Brazilian spinach is a highly nutritious leafy vegetable containing vitamins, minerals, and dietary fiber. This study assesses the impact of pruning intensities and non-nutrient ameliorants on Brazilian spinach growth in a floating cultivation system. The research follows a factorial randomized block design, with pruning intensity as the first factor and non-nutrient ameliorant as the second factor. Pruning intensity was categorized as light, moderate, and heavy, while the non-nutrient ameliorant included control, fine sand, rice-husk biochar, and fine sand + rice-husk biochar. The results show that moderate and heavy pruning effectively improved the response to NPK fertilization. Moderate pruning is proven to trigger the canopy area, especially starting 2 to 4 weeks after pruning. The Brazilian spinach canopy area demonstrated exponential growth and positively correlated with canopy diameter. The photosynthesis distribution in branch and shoot on moderate pruning was higher than heavy pruning, as indicated by dry weight. Moderate pruning produced a higher marketable yield than other pruning intensities. Regarding non-nutrient ameliorants, there are similarities in SPAD value, canopy area, index, dry weight, and yield. Therefore, moderate pruning is an effective practice to improve the growth and yield of Brazilian spinach, while the selected non-nutrient ameliorants have no impact.


Keywords


Floating cultivation technique; Morphological modification; Non-fertilizer ameliorant; Periodic maintenance; Yield enhancement

Full Text:

PDF

References


Abiya, A. A., Kupesa, D. M., Beesigamukama, D., Kassie, M., Mureithi, D., Thairu, D., Wesonga, J., Tanga, C. M., & Niassy, S. (2022). Agronomic Performance of Kale (Brassica oleracea) and Swiss Chard (Beta vulgaris) Grown on Soil Amended with Black Soldier Fly Frass Fertilizer under Wonder Multistorey Gardening System. Agronomy, 12(9), 2211. https://doi.org/10.3390/agronomy12092211

Adnan, S., Ullah, K., & Ahmed, R. (2020). Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Meteorological Applications, 27(1), e1859. https://doi.org/10.1002/met.1859

Ahmad, H., Yeasmin, S., Rahul, Sk., Mahbuba, S., & Jamal Uddin, A. F. M. (2017). Influence of sucker pruning and old leaves removal on growth and yield of cherry tomato. Journal of Bioscience and Agriculture Research, 12(02), 1048-1053. https://doi.org/10.18801/jbar.120217.128

Alam, M. A., Alias, S. B., Gobilik, J., Mijin, S. B., & Khandaker, M. M. (2022). Moringa oleifera Seed Treated Sanitized Water Effect on Growth and Morpho-physiology of Commonly Consumed Vegetables of Malaysia. Basrah Journal of Agricultural Sciences, 35(1), 158-172. https://doi.org/10.37077/25200860.2022.35.1.13

Alghamdi, A. G., Al-Omran, A., Alkhasha, A., & Alharbi, A. R. (2022). Impacts of Biochar on Hydro-Physical Properties of Sandy Soil under Different Irrigation Regimes for Enhanced Tomato Growth. Agronomy, 12(8), 1762. https://doi.org/10.3390/agronomy12081762

Atmaca, S., & Ulger, S. (2021). The Effects of Different Planting Densities and Pruning Methods on Changes of Endogenous Hormone Levels in Shoot Tips and Flowering in'Gemlik'Olive Cultivar. Erwerbs-Obstbau, 63(2), 201–207. https://doi.org/10.1007/s10341-021-00558-6

Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404-418. https://doi.org/10.3390/agronomy3020404

Chen, Z., Sun, S., Zhu, Z., Jiang, H., & Zhang, X. (2019). Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach. Agricultural Water Management, 225, 105765. https://doi.org/10.1016/j.agwat.2019.105765

Costa, L., Ampatzidis, Y., Rohla, C., Maness, N., Cheary, B., & Zhang, L. (2021). Measuring pecan nut growth utilizing machine vision and deep learning for the better understanding of the fruit growth curve. Computers and Electronics in Agriculture, 181, 105964. http://doi.org/10.1016/j.compag.2020.105964

du Toit, E. S., Sithole, J., & Vorster, J. (2020). Pruning intensity influences growth, flower and fruit development of Moringa oleifera Lam. under sub-optimal growing conditions in Gauteng, South Africa. South African Journal of Botany, 129, 448-456. https://doi.org/10.1016/j.sajb.2019.11.033

Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. https://doi.org/10.3732/apps.1400033

Fasil, M., Surendran, U. P., Gopinath, G., Karimbanakkuzhi, A., & Sahadevan, A. S. (2022). Integration of GIS, remote sensing, and spectral indices for evaluation of forest canopy density model in drought and wet years in Western Ghats region of humid tropical Kerala, India. Arabian Journal of Geosciences, 15(12), 1143. https://doi.org/10.1007/s12517-022-10368-z

Flores-Ramírez, E., Abel, S., & Nehls, T. (2018). Water retention characteristics of coarse porous materials to construct purpose-designed plant growing media. Soil science and Plant Nutrition, 64(2), 181-189. https://doi.org/10.1080/00380768.2018.1447293

Go, S. H., Lee, D. H., Na, S. I., & Park, J. H. (2022). Analysis of Growth Characteristics of Kimchi Cabbage Using Drone-Based Cabbage Surface Model Image. Agriculture, 12(2), 216. http://doi.org/10.3390/agriculture12020216

Gonzalez-Dugo, V., Testi, L., Villalobos, F. J., López-Bernal, A., Orgaz, F., Zarco-Tejada, P. J., & Fereres, E. (2020). Empirical validation of the relationship between the crop water stress index and relative transpiration in almond trees. Agricultural and Forest Meteorology, 292-293, 108128. https://doi.org/10.1016/j.agrformet.2020.108128

Gustiar, F., Lakitan, B., Budianta, D., & Negara, Z. P. (2023). Non-Destructive model for estimating leaf area and growth of Cnidoscolus aconitifolius cultivated using different stem diameter of the semi hardwood cuttings. AGRIVITA, Journal of Agricultural Science, 45(2), 188-198. http://doi.org/10.17503/agrivita.v45i2.3849

Hou, M., Tian, F., Zhang, T., & Huang, M. (2019). Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agricultural Water Management, 222, 182-192. https://doi.org/10.1016/j.agwat.2019.06.005

Hulin, C., & Mercury, L. (2019). Capillarity-driven supersolubility in dual-porosity systems. Geochimica et Cosmochimica Acta, 252, 144-158. https://doi.org/10.1016/j.gca.2019.02.026

Ikram, E. H. K., Nasir, W. D. N. W. M., & Ikram, N. K. K. (2022). Antioxidant activity and total phenolics content of Brazilian spinach (Alternanthera sissoo) and spinach cultivar in Malaysia. Malaysian Journal of Medicine and Health Sciences, 18(Supp8), 221–229. https://medic.upm.edu.my/upload/dokumen/2022070111274929_0161.pdf

Japakumar, J., Abdullah, R., & Mohd Rosli, N. S. (2021). Effects of biochar and compost applications on soil properties and growth performance of Amaranthus sp. grown at urban community garden. AGRIVITA, Journal of Agricultural Science, 43(3), 441-453. http://doi.org/10.17503/agrivita.v43i3.2751

Jaya, K. K., Lakitan, B., & Bernas, S. M. 2021. Responses of leaf celery to floating culture system with different depths of water-substrate interface and NPK-fertilizer application. Walailak Journal of Science and Technology, 18(12), 19823. https://doi.org/10.48048/wjst.2021.19823

Ji, R., Shi, W., Wang, Y., Zhang, H., & Min, J. (2020). Nondestructive estimation of bok choy nitrogen status with an active canopy sensor in comparison to a chlorophyll meter. Pedosphere, 30(6), 769–777. https://doi.org/10.1016/S1002-0160(20)60037-6

Kathiresan, K., Narendran, R., Kalidasan, K., & Dinesh, P. (2019). Pruning of shoot branches: An efficient technique for stimulating the mangrove growth (Rhizophora mucronata). Biocatalysis and Agricultural Biotechnology, 17, 309-312. https://doi.org/10.1016/j.bcab.2018.12.006

Kumar, V., Jain, K. K., Kumar, S., & Kumhar, B. L. (2018). Impact of different pruning of Dalbergia sissoo and different date of planting of turmeric on growth and yield. International Journal of Forestry and Crop Improvement, 9(1), 29-32. https://doi.org/10.15740/HAS/IJFCI/9.1/29-32

Lakitan, B., Kartika, K., Widuri, L. I., Siaga, E., & Fadilah, L. N. (2021). Lesser-known ethnic leafy vegetables Talinum paniculatum grown at tropical ecosystem: Morphological traits and nondestructive estimation of total leaf area per branch. Biodiversitas Journal of Biological Diversity, 22(10), 4487-4496. https://doi.org/10.13057/biodiv/d221042

Lakitan, B., Susilawati, S., Wijaya, A., Ria, R. P., & Muda, S. A. (2023). Leaf Blade Growth and Development in Red, Pink, and Yellow Petiole Cultivars of the Swiss Chards Grown in Floating Culture System. Jordan Journal of Biological Sciences, 16(1), 157-164. https://doi.org/10.54319/jjbs/160119

Li, B., Huang, W., Elsgaard, L., Yang, B., Li, Z., Yang, H., & Lu, Y. (2020). Optimal biochar amendment rate reduced the yield-scaled N2O emissions from Ultisols in an intensive vegetable field in South China. Science of the Total Environment, 723, 138161. https://doi.org/10.1016/j.scitotenv.2020.138161

Mendoza-Tafolla, R. O., Juarez-Lopez, P., Ontiveros-Capurata, R. E., Sandoval-Villa, M., Alia-Tejacal, I., & Alejo-Santiago, G. (2019). Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 751-756. https://doi.org/10.15835/nbha47311525

Mota, L. H. S. O., Fernandes, A. M., Assunção, N. S., & Leite, H. M. (2020). Leaf area development and yield of cassava in response to pruning of shoots and the late supply of nitrogen and potassium. Agronomy Journal, 112(2), 1406-1422. https://doi.org/10.1002/agj2.20113

Muda, S. A., Lakitan, B., Wijaya, A., & Susilawati. (2023). Influence of growing systems and non-fertilizer ameliorants on microclimate and growth of Brazilian spinach. Pesquisa Agropecuária Tropical, 53, e75742. https://doi.org/10.1590/1983-40632023v5375742

Rodríguez-Vila, A., Atuah, L., Abubakari, A. H., Atorqui, D. W., Abdul-Karim, A., Coole, S., Hammond, J., Robinson, S., & Sizmur, T. (2022). Effect of biochar on micronutrient availability and uptake into leafy greens in two urban tropical soils with contrasting soil pH. Frontiers in Sustainable Food Systems, 6, 821397. https://doi.org/10.3389/fsufs.2022.821397

Setiawati, W., Muharam, A., Hasyim, A., Prabaningrum, L., Moekasan, T. K., Murtiningsih, R., Lukman, L., & Mejaya, M. J. (2022). Growth, and yield characteristics as well as pests and diseases susceptibility of chili pepper (Capsicum annuum L.) under different plant densities and pruning levels. Applied Ecology and Environmental Research, 20(1), 543-553. https://doi.org/10.15666/aeer/2001_543553

Sharma, D. P., & Singh, N. (2018). Effect of rejuvenation pruning on the growth, productivity and disease incidence in declining trees of pomegranate (Punica granatum L.) cv. Kandhari Kabuli. Journal of Applied and Natural Science, 10(1), 358-362. https://doi.org/10.31018/jans.v10i1.1630

Shomana, T., Botha, D.E. & Agachi, P.S. (2020). The water retention properties of biochar derived from broiler poultry litter as applied to the Botswana soil. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, 1(1), 67-72. https://doi.org/10.37281/DRCSF/1.1.9

Susanto, S., Melati, M., & Aziz, S. A. (2019). Pruning to improve flowering and fruiting of ‘Crystal’guava. AGRIVITA, Journal of Agricultural Science, 41(1), 48-54. http://doi.org/10.17503/agrivita.v41i1.1954

Thakur, O., Kumar, V., & Singh, J. (2018). A review on advances in pruning to vegetable crops. International Journal of Current Microbiology and Applied Sciences, 7(2), 3556-3565. https://doi.org/10.20546/ijcmas.2018.702.422

Xu, Y., Liu, X., Shi, Q., Cheng, F., Zhang, L., Shao, C., & Gong, B. (2020). Pruning length of lateral branches affects tomato growth and yields in relation to auxin-cytokinin crosstalt. Plant Growth Regulation, 92(1), 1-13. http://doi.org/10.1007/s10725-020-00615-2




DOI: http://doi.org/10.17503/agrivita.v46i2.4219

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.