The Effectiveness Comparison Between Application of Indigenous Arbuscular Mycorrhizal Fungal Community and Stenotrophomonas maltophilia to Suppress Fusarium Wilt Incidence on Local Garlic Plant (Lumbu Hijau)
Abstract
Wilt disease caused by Fusarium oxysporum is one of the most serious plant diseases in the world. There is no effective contol for. This study investigated the potential of arbuscular mycorrhizal and bacterial antagonists to control F. oxysporum through in vitro and in vivo studies. In this study, the antagonistic bacteria Stenotrophomonas maltophilia was isolated from mycorrhizal propagation media. Antagonist bacteria S. maltophilia showed antagonistic ability against F. oxysporum with an inhibition zone of 17.9 cm. Antagonistic bacteria and mycorrhizae used in this study significantly reduced the incidence of fusarium wilt in in vivo experiments. It was found that mycorrhizal and S. maltophilia inoculation showed disease incidence rates at 40% and 47.6%. While in the control treatment the incidence of disease reached 90.3%. The biocontrol agents of S. maltophilia and mycorrhizae have a promising prospective strategy to protect garlic plants. These results are expected to provide new insights for sustainable crop protection systems.
Keywords
Full Text:
PDFReferences
Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), e1002352. DOI
Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 114(3), 329–341. DOI
Alexander, M. (1965). Most-probable-number method for microbial populations. In A. G. Norman (Ed.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (pp. 1467–1472). American Society of Agronomy, Inc. DOI
Alijani, Z., Amini, J., Ashengroph, M., & Bahramnejad, B. (2020). Volatile compounds mediated effects of Stenotrophomonas maltophilia strain UN1512 in plant growth promotion and its potential for the biocontrol of Colletotrichum nymphaeae. Physiological and Molecular Plant Pathology, 112, 101555. DOI
Barea, J.-M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761–1778. DOI
Boutaj, H., Meddich, A., Roche, J., Mouzeyar, S., & El Modafar, C. (2022). The effects of mycorrhizal fungi on vascular wilt diseases. Crop Protection, 155, 105938. DOI
Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of The Total Environment, 566–567, 1223–1234. DOI
Ciampi, P., L., Nissen, M., J., Venegas, G., E., Fuentes, P., R., Costa, L., M., Schöbitz, T., R., … Alvarado, A., P. (2009). Identification of two species of Fusarium link that cause wilting of colored callas (Zantedeschia aethiopica (L.) Spreng.) cultivated under greenhouse conditions in Chile. Chilean Journal of Agricultural Research, 69(4), 516–525. DOI
da Silva, I. R., de Souza, F. A., da Silva, D. K. A., Oehl, F., & Maia, L. C. (2017). Patterns of arbuscular mycorrhizal fungal distribution on mainland and island sandy coastal plain ecosystems in Brazil. Microbial Ecology, 74(3), 654–669. DOI
Davison, J., Moora, M., Öpik, M., Adholeya, A., Ainsaar, L., Bâ, A., … Zobel, M. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349(6251), 970–973. DOI
Duque, P. (2016). Environmental responses in plants: Methods and protocols. Methods in Molecular Biology. New York: Humana. DOI
Fourie, G., Steenkamp, E. T., Ploetz, R. C., Gordon, T. R., & Viljoen, A. (2011). Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution, 11(3), 533–542. DOI
Gao, M., Xiong, C., Gao, C., Tsui, C. K. M., Wang, M.-M., Zhou, X., … Cai, L. (2021). Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome, 9(1), 187. DOI
Ghosh, R., Chatterjee, S., & Mandal, N. C. (2020). Stenotrophomonas. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (pp. 427–442). Academic Press. DOI
Goicoechea, N. (2020). Mycorrhizal fungi as bioprotectors of crops against Verticillium Wilt—A hypothetical scenario under changing environmental conditions. Plants, 9(11), 1468. DOI
Haggag, W. M., & Mohamed, H. A.-L. A. (2007). Biotechnological aspects of microorganisms used in plant biological control. American-Eurasian Journal of Sustainable Agriculture, 1(1), 7–12. Retrieved from PDF
Hofstetter, V., Buyck, B., Eyssartier, G., Schnee, S., & Gindro, K. (2019). The unbearable lightness of sequenced-based identification. Fungal Diversity, 96(1), 243-284. DOI
Islam, M., Al-Hashimi, A., Ayshasiddeka, M., Ali, H., El Enshasy, H. A., Dailin, D. J., … Yeasmin, T. (2022). Prevalence of mycorrhizae in host plants and rhizosphere soil: A biodiversity aspect. PLoS ONE, 17(3), e0266403. DOI
Jakobi, M., Winkelmann, G., Kaiser, D., Kempter, C., Jung, G., Berg, G., & Bahl, H. (1996). Maltophilin: A new antifungal compound produced by Stenotrophomonas maltophilia R3089. Journal of Antibiotics, 49(11), 1101–1104. DOI
Jankiewicz, U., Brzezinska, M. S., & Saks, E. (2012). Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. 113(1), 30–35. DOI
John, N., & Thangavel, M. (2017). Stenotrophomonas maltophilia: A novel plant growth promoter and biocontrol agent from marine environment. International Journal of Advanced Research, 5(4), 207–214. DOI
Kai, M., Effmert, U., Berg, G., & Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187(5), 351–360. DOI
Kalman, B., Abraham, D., Graph, S., Perl-Treves, R., Harel, Y. M., & Degani, O. (2020). Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology, 9(4), 69. DOI
Koltai, H., & Kapulnik, Y. (2010). Arbuscular mycorrhizas: Physiology and function. Dordrecht: Springer. DOI
Koske, R. E., & Gemma, J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 92(4), 486–488. DOI
Ladygina, N., Henry, F., Kant, M. R., Koller, R., Reidinger, S., Rodriguez, A., … Wurst, S. (2010). Additive and interactive effects of functionally dissimilar soil organisms on a grassland plant community. Soil Biology and Biochemistry, 42(12), 2266–2275. DOI
Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell Publishing. DOI
Mahdi, O., Eklund, B., & Fisher, N. (2014). Laboratory culture and maintenance of Stenotrophomonas maltophilia. Current Protocols in Microbiology, 32, 1–9. DOI
Maiti, S. K., & Ghosh, D. (2020). Plant–soil interactions as a restoration tool. In Climate Change and Soil Interactions (pp. 689-730). Elsevier. DOI
Marinho, F., Da Silva, I. R., Oehl, F., & Maia, L. C. (2018). Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia, 70, 107–127. DOI
Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., & Tahara, S. (1999). Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Applied and Environmental Microbiology, 65(10), 4334–4339. DOI
Nottingham, A. T., Turner, B. L., Winter, K., Chamberlain, P. M., Stott, A., & Tanner, E. V. J. (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiology Ecology, 85(1), 37–50. DOI
Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12(1), 385. DOI
Parihar, M., Rakshit, A., Rana, K., Tiwari, G., & Jatav, S. S. (2020). The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of pea (Pisum sativum L.). Communications in Soil Science and Plant Analysis, 51(11), 1545–1559. DOI
Pereira, C. M. R., da Silva, D. K. A., Goto, B. T., Rosendahl, S., & Maia, L. C. (2018). Management practices may lead to loss of arbuscular mycorrhizal fungal diversity in protected areas of the Brazilian Atlantic Forest. Fungal Ecology, 34, 50–58. DOI
Rajamohan, K., Udhayakumar, R., Sanjaygandhi, S., Kumar, L. V., Selvi, M. T., Sudhasha, S., & Yuvarani, R. (2019). Efficacy of VAM fungi and antagonistic bacteria against onion basal rot incited by Fusarium oxysporum f.sp. cepae. Journal of Pharmacognosy and Phytochemistry, 8(2S), 413-418. Retrieved from website
Ranjbariyan, A. R., Shams-Ghahfarokhi, M., Kalantari, S., & Razzaghi-Abyaneh, M. (2011). Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iranian Journal of Microbiology, 3(3), 140–146. Retrieved from website
Sintayehu, A., Sakhuja, P. K., Fininsa, C., & Ahmed, S. (2011). Management of fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Protection, 30(5), 560–565. DOI
Trabelsi, R., Sellami, H., Gharbi, Y., Krid, S., Cheffi, M., Kammoun, S., … Triki, M. A. (2017). Morphological and molecular characterization of Fusarium spp. associated with olive trees dieback in Tunisia. 3 Biotech, 7(1), 28. DOI
van der Heijden, M. G. A., & Hartmann, M. (2016). Networking in the plant microbiome. PLoS Biology, 14(2), e1002378. DOI
Zhou, J., Chai, X., Zhang, L., George, T. S., Wang, F., & Feng, G. (2020). Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes. MSystems, 5(6), 00929-20. DOI
DOI: http://doi.org/10.17503/agrivita.v45i1.3970
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.