Alteration of the Rhizosphere Bacteria Community Respond Differently to Plant Growth Promoting Rhizobacteria in Peanut Soil’s Poteran Island
Abstract
Keywords
Full Text:
PDFReferences
Anka, L. M. (2021). Role of soil in agriculture. Global Science Research Journals, 9(3), 1.
Bertola, M., Ferrarini, A., & Visioli, G. (2021). Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by-Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms, 9(7), 1400. DOI
Bhattacharyya, D., Duta, S., Yu, S.-M., Jeong, S. C., & Lee, Y. H. (2018). Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202. The Plant Pathology Journal, 34(4), 286–296. DOI
Correia, L. T., Suarna, I. W., Suryani, N. N., & Cakra, I. G. L. O. (2021). Effect of Different Dosage and Application Frequency of Liquid Organic Fertilizer in Dwarf Elephant Grass (Pennisetum purpureum cv Mott) to Ecological Characteristic of Vertisol Soil in Timor Leste. International Journal of Life Sciences, 5(2), 118–124.
Dębska, B., Długosz, J., Piotrowska-Długosz, A., & Banach-Szott, M. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study. Journal of Soils and Sediments, 16(10), 2335–2343. DOI
Demir, Z. (2020). Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum melongena L.). Communications in Soil Science and Plant Analysis, 51(14), 1888–1903. DOI
Fang, X., Zhu, Y.-L., Liu, J.-D., Lin, X.-P., Sun, H.-Z., Tang, X.-H., Hu, Y.-L., Huang, Y.-P., & Yi, Z.-G. (2022). Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical china. Forests, 13(4), 578. DOI
Faridvand, S., Rezaei-Chiyaneh, E., Battaglia, M. L., Gitari, H. I., Raza, M. A., & Siddique, K. H. M. (2021). Application of bio and chemical fertilizers improves yield, and essential oil quantity and quality of Moldavian balm (Dracocephalum moldavica L.) intercropped with mung bean (Vigna radiata L.). Food and Energy Security, 11(2), e319. DOI
Fomina, M., & Skorochod, I. (2020). Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10, 861. DOI
Fracchia, L., Perotti, E. B. R., Pidello, A., Rinaldi, M., & Martinotti, M. G. (2011). Persistence and Impact of a PGPR on Microbial Communities of Biosolids and Soil Amended with Them. Journal of Environmental Science and Engineering, 5, 578–595.
Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T., & Tebbe, C. C. (2018). Bacterial preferences for specific soil particle size fractions revealed by community analyses. Frontiers in Microbiology, 9, 149. DOI
Iqbal, M. A., Khalid, M., Shahzad, S. M., Ahmad, M., Soleman, N., & Akhtar, N. (2012). Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chilean Journal of Agricultural Research, 72(1), 104–110. DOI
Joko, T., Koentjoro, M. P., Somowiyarjo, S., Rohman, M. S., Liana, A., & Ogawa, N. (2012). Response of rhizobacterial communities in watermelon to infection with cucumber green mottle mosaic virus as revealed by cultivation-dependent RISA. Archives of Phytopathology and Plant Protection, 45(15), 1810–1818. DOI
Kumari, N., & Mohan, C. (2021). Basics of Clay Minerals and Their Characteristic Properties. In G. M. Do Nascimento (Ed.), Clay and Clay Minerals. IntechOpen. DOI
Li, H., Penttinen, P., Mikkonen, A., Stoddard, F. L., & Lindström, K. (2020). Response of Soil Bacterial Community Diversity and Composition to Time, Fertilization, and Plant Species in a Sub-Boreal Climate. Frontiers in Microbiology, 11, 1780. DOI
Mohammad, A. O. (2015). Assessing changes in soil microbial population with some soil physical and chemical properties. International Journal of Plant, Animal and Environmental Sciences, 5(3), 117-123.
Pagnani, G., Galieni, A., Stagnari, F., Pellegrini, M., Del Gallo, M., & Pisante, M. (2020). Open field inoculation with PGPR as a strategy to manage fertilization of ancient Triticum genotypes. Biology and Fertility of Soils, 56(1), 111–124. DOI
Pereira, S. I. A., Abreu, D., Moreira, H., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. DOI
Piromyou, P., Noisangiam, R., Uchiyama, H., Tittabutr, P., Boonkerd, N., & Teaumroong, N. (2013). Indigenous Microbial Community Structure in Rhizosphere of Chinese Kale as Affected by Plant Growth-Promoting Rhizobacteria Inoculation. Pedosphere, 23(5), 577–592. DOI
Renoud, S., Abrouk, D., Prigent-Combaret, C., Wisniewski-Dyé, F., Legendre, L., Moënne-Loccoz, Y., & Muller, D. (2022). Effect of Inoculation Level on the Impact of the PGPR Azospirillum lipoferum CRT1 on Selected Microbial Functional Groups in the Rhizosphere of Field Maize. Microorganisms, 10, 325. DOI
Sedri, M. H., Niedbała, G., Roohi, E., Niazian, M., Szulc, P., Rahmani, H. A., & Fieziasl, V. (2022). Comparative Analysis of Plant Growth-PromotingRhizobacteria (PGPR) and Chemical Fertilizers on Quantitative and Qualitative Characteristics of Rainfed Wheat. Agronomy, 12(7), 1524. DOI
South, K. A., Nordstedt, N. P., & Jones, M. L. (2021). Identification of Plant Growth Promoting Rhizobacteria That Improve the Performance of Greenhouse-Grown Petunias under Low Fertility Conditions. Plants, 10, 1410. DOI
Tang, X., Zhong, R., Jiang, J., He, L., Huang, Z., Shi, G., Wu, H., Liu, J., Xiong, F., Han, Z., Tang, R., & He, L. (2020). Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents. BMC Biotechnology, 20, 13. DOI
Tatas, Budipriyanto, A., Khoiri, M., Lestari, W., & Rahman, A. (2015). Study on Water Balance in Poteran – A Small Island in East Java, Indonesia. Procedia Engineering, 125, 236–242. DOI
Tsai, Y., Baldwin, S. A., Siang, L. C., & Gopaluni, B. (2019). A Comparison of Clustering and Prediction Methods for Identifying Key Chemical–Biological Features Affecting Bioreactor Performance. Processes, 7(9), 614. DOI
Winand, R., Bogaerts, B., Hoffman, S., Lefevre, L., Delvoye, M., Van Braekel, J., Fu, Q., Roosens, N. H. C., De Keersmaecker, S. C. J., & Vanneste, K. (2020). Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: Comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies. International Journal of Molecular Sciences, 21, 298. DOI
DOI: http://doi.org/10.17503/agrivita.v46i3.3947
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.