Effect of Colchicine Concentrations and Soaking Period on Ploidy of Katokkon Chili (Capsicum chinense Jacq.) at Seedlings Stage
Abstract
This research is conducted to study the induction of polyploidization in Katokkon chili using colchicine to study the effect of chromosome doubling or polyploid on certain superior characters during the seedling phase. Some morphological alterations were determined and proven to persist during the seedling phase. The study was conducted in the laboratory and screen house of the Department of Agronomy, Faculty of Agriculture, Universitas Hasanuddin. The polyploidy of the Katokkon chili is induced by soaking the germinated seeds in 0%, 0.05%, 0.1%, and 0.2% colchicine solutions for 6, 12, 24, and 48 hours each. Ploidy levels are analyzed using flow cytometry (Partec®Cy-Flow Space TM). Results show significant differences in colchicine treatment affecting all parameters observed: hypocotyl base of sprouts, plant height, stomata size, and the number of lateral shoots. Flow cytometry analysis histogram confirmed that administration of 0.1% colchicine concentration with 48 hours soaking time and 0.2% colchicine concentration with 24- or 48-hour soaking time can induce tetraploid plants (4n=48) with different coefficients of variance (CV-x%), 5.36%, 4.65%, 6.08%, respectively. Vigorous growth phenotype in leaf size and plant height was more clearly seen in the one-month-old tetraploid Katokkon chili seedlings induced by 0.10% with a soaking time of 48 hours.
Keywords
Full Text:
PDFReferences
Al-amanah, H., Sjahril, R., Haring, F., Riadi, M., & Larekeng, S. H. (2022). Mapping distribution of Capsicum annum var. chinense in Tana Toraja and surrounding districts (Indonesia) based on fruit morphology. Biodiversitas, 23(2), 982-990. https://doi.org/10.13057/biodiv/d230241.
Amanah, H.A., Arumingtyas E.L., & Indriyani, S. (2016). Chromosome analysis of cayenne pepper (Capsicum frustescens L.) in colchicine-induced mutation. Journal of Applied Horticulture, 18(3), 217-220. https://doi.org/10.37855/jah.2016.v18i03.38.
Ari, E., Djapo, H., Mutlu, N., Gurbuz, E., & Karaguzel, O. (2015). Creation of variation through gamma irradiation and polyploidization in Vitex agnus-castus L. Scientia Horticulturae, 195, 74-81. https://doi.org/10.1016/j.scienta.2015.08.039.
Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics, 132(12), 3227–3243. https://doi.org/10.1007/s00122-019-03433-x.
Choudhury, D., Ghosh, D., Mondal, M., Singha, D., Pothuraju, R., & Malakar, P. (2024). Polyploidy and mTOR signaling: a possible molecular link. Cell Communication and Signaling, 22(1), 196. https://doi.org/10.1186/s12964-024-01526-9.
Doyle, J. J., & Coate, J. E. (2019). Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. International Journal of Plant Sciences, 180(1), 1–52. https://doi.org/10.1086/700636
El-Nashar, Y. I., & Ammar, M. H., (2016). Mutagenic influences of colchicine on phenological and molecular diversity of Calendula officinalis L. Genetics and Molecular Research 15(2), 1–16. https://doi.org/10.4238/gmr.15027745.
Eng, W. H., & Ho, W. S. (2019). Polyploidization using colchicine in horticultural plants: A review. Scientia Horticulturae, 246, 604–617. https://doi.org/10.1016/j.scienta.2018.11.010.
Eng, W. H., Ho, W.S., & Ling, K. H. (2021). In vitro induction and identification of polyploid Neolamarckia cadamba plants by colchicine treatment. PeerJ, 9, e12399. https://doi.org/10.7717/peerj.12399.
Flowrenzhy, D., & Harijati, N. (2017). Pertumbuhan dan Produktivitas Tanaman Cabai Katokkon (Capsicum chinense Jacq.) di Ketinggian 600 Meter dan 1.200 Meter di atas Permukaan Laut. Biotropika, 5(2), 44-53. https://doi.org/10.21776/ub.biotropika.2017.005.02.2.
Gallone, A., Hunter, A., & Douglas, G.C. (2014). Polyploid induction in vitro using colchicine and oryzalin on Hebe ‘Oratia Beauty’: Production and characterization of the vegetative traits. Scientia Horticulturae, 179, 59-66. https://doi.org/10.1016/j.scienta.2014.09.014.
Gantait, S., & Sinniah, U. R. (2011). Morphology, flow cytometry and molecular assessment of ex-vitro grown micropropagated anthurium in comparison with seed germinated plants. African Journal of Biotechnology, 10(64), 13991-13998. https://doi.org/10.5897/AJB11.1855.
Guerra, D., Wittmann, M. T. S., Schwarz, S. F., de Souza, P. V. D., Gonzatto, M. P., & Weiler, R. L. (2014). Comparison between diploid and tetraploid citrus rootstocks: morphological characterization and growth evaluation. Basic Area Bragantia, 73(1), 1-7. https://doi.org/10.1590/brag.2014.007
Guo, W. W., Liang, W. J., Xie, K. D., Xia, Q. M., Fu, J., Guo, D. Y., Xie, Z. Z., Wu, X. M., Xu, Q., Yi, H. L., & Deng, X. X., (2016). Exploitation of polyploids from 39 citrus seedling populations. Acta Horticulturae, 1135, 11–16. https://doi.org/10.17660/ActaHortic.2016.1135.2.
Handayani, R. S., Yusuf, M., & Akmal, A. (2018). Potential changes in watermelon (Citrullus lannatu) ploidy treated by colchicine. Journal of Tropical Horticulture, 1(1), 10-14. http://dx.doi.org/10.33089/jthort.v1i1.6.
Hannweg, K., Sippel, A., & Bertling, I. (2013). A simple and effective method for the micropropagation and in vitro induction of polyploidy and the effect on floral characteristics of the South African iris, Crocosmia aurea. South African Journal of Botany, 88, 367-372. https://doi.org/10.1016/j.sajb.2013.09.005.
Hassan, J., Miyajima, I., Ozaki, Y., Mizunoe, Y., Sakai, K., & Zaland, W. (2020). Tetraploid induction by colchicine treatment and crossing with a diploid reveals less-seeded fruit production in pointed gourd (Trichosanthes dioica Roxb.). Plants, 9(3), 370. https://doi.org/10.3390/plants9030370.
He, M., Gao, W., Gao, Y., Liu, Y., Yang, X., Jiao, H. & Zhou, Y. (2016). Polyploidy induced by colchicine in Dendranthema indicum var. aromaticum, a scented chrysanthemum. European Journal of Horticultural Science, 81(4), 219–226. https://doi.org/10.17660/eJHS.2016/81.4.5.
Hu, Y., Sun, D., Hu, H., Zuo, X., Xia, T., & Xie, J. (2021). A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Scientia Horticulturae, 277, 109843. https://doi.org/10.1016/j.scienta.2020.109843.
Huang, H., Gao, S., Wang, D., Huang, P., & Li, J., (2013). Autotetraploidy induced in Nianmaohuangqin (Radix Scutellariae viscidulae) with colchicine in vitro. Journal of Traditional Chinese Medicine, 34(2), 199–205. https://doi.org/10.1016/S0254-6272(14)60079-0.
Kasmiati, Sjahril, R., Riadi, M., Ridwan, I., & Trisnawaty, A. (2020). The effects of colchicine concentration and soaking time on formation of leaves and roots of Katokkon (Capsicum chinense Jacq.) in vitro. IOP Conference Series: Earth and Environmental Science, 486(1), 012103. https://doi.org/10.1088/1755-1315/486/1/012103.
Kurtz, L. E., Brand, M. H., & Lubell-Brand, J. D. (2020). Production of tetraploid and triploid hemp. HortScience, 55(10), 1703–1707. https://doi.org/10.21273/HORTSCI15303-20.
Li, S., Lin, Y., Pei, H., Zhang, J., Zhang, J., & Luo, J. (2020). Variations in colchicine-induced autotetraploid plants of Lilium davidii var. Unicolor. Plant Cell, Tissue and Organ Culture (PCTOC), 141(3), 479–488. https://doi.org/10.1007/s11240-020-01805-6.
Limera, C., Wang, K., Xu, L., Wang, Y., Zhu, X., Feng, H., Sha, Y., Gong, Y. & Liu, L. (2016). Induction of autotetraploidy using colchicine and its identification in radish (Raphanus sativus L.). Journal of Horticultural Science and Biotechnology, 91(1), 64–71. https://doi.org/10.1080/14620316.2015.1110993.
Lippolis, A., Roland, W. S. U., Bocova, O., Pouvreau, L., & Trindade, L. M. (2023). The challenge of breeding for reduced off-flavor in faba bean ingredients. Frontiers in Plant Science, 14, 1286803. https://doi.org/10.3389/fpls.2023.1286803
Luo, Z., Iaffaldano, B. J., & Cornish, K. (2018). Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Industrial Crops & Products, 112, 75–81. https://doi.org/10.1016/j.indcrop.2017.11.010.
Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’. Folia horticulturae, 30(2), 307-319. https://doi.org/10.2478/fhort-2018-0026.
Maru, B., Parihar, A., Kulshrestha, K., & Vaja, M. (2021). Induction of polyploidy through colchicine in cotton (Gossypium herbaceum) and its conformity by cytology and flow cytometry analyses. Journal of Genetics, 100 52, 1-10. https://doi.org/10.1007/s12041-021-01297-z.
Moghbel, N., Borujeni, M. K., & Bernard, F. (2015). Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology, 13, 1–6. https://doi.org/10.1016/j.jgeb.2015.02.002.
Murni, D. (2010). Pengaruh perlakuan kolkisin terhadap jumlah kromosom dan fenotip tanaman cabe keriting (Capsicum annuum L.) (The effect of cholchisine treatment to induce chromosome number and phenotype of red chilli plants). Jurnal Agroekoteknologi, 2(1), 43-48. https://jurnal.untirta.ac.id/index.php/jav/article/view/633/499.
Novitasari, Sjahril, R., Saleh, I. R., Haring, F., Mantja, K., Tambung, A., & Noviany, F. (2023). Phenotypic leaf character of katokkon chili pepper (Capsicum chinense Jacq.) result of polyploidization with colchicine. IOP Conference Series: Earth and Environmental Science, 1230(1), 012124. https://doi.org/10.1088/1755-1315/1230/1/012124
Parsons, J. L., Martin, S. L., James, T., Golenia, G., Boudko, E. A., & Hepworth, S. R. (2019). Polyploidization for the genetic improvement of Cannabis sativa. Frontiers in Plant Science, 10, 476. https://doi.org/10.3389/fpls.2019.00476.
Pliankong, P., Suksa-Ard, P., & Wannakrairoj, S. (2017). Effects of colchicine and oryzalin on polyploidy induction and production of capsaicin in Capsicum frutescens L. The Agricultural Science Society of Thailand, 50(2), 108-120. https://www.thaiscience.info/Journals/Article/TJAS/10989651.pdf.
Sajjad, Y., Jaskani, M. J., Mehmood, A., Ahmad, I., & Abbas, H. (2013). Effect of Colchicine on In Vitro Polyploidy Induction in African Marigold (Tagetes erecta). Pakistan Journal of Botany, 45(3), 1255-1258. https://www.pakbs.org/pjbot/PDFs/45(4)/19.pdf.
Sattler, M. C., Carvalho, C. R., & Clarindo, W. R., (2016). The polyploidy and its key role in plant breeding. Planta, 243, 281-296. https://doi.org/10.1007/s00425-015-2450-x.
Siregar, M., Siregar, L. A. M., & Hanum, C. (2022). Induction of mutation with colchicine in Olimpus potato by in vitro culture. IOP Conference Series: Earth and Environmental Science, 977(1), 012020. https://doi.org/10.1088/1755-1315/977/1/012020.
Sjahril, R., Kasmiati, Riadi, M., Ridwan, I., Jamaluddin, I., & Panga, N.J. (2021). Flow cytometry analysis on colchicine induced polyploid of Katokkon peppers (Capsicum chinense Jacq.). IOP Conference Series: Earth and Environmental Science, 807(3), 032024. https://doi.org/10.1088/17551315/807/3/032024.
Sjahril, R., Riadi, M., Saleh, I. R., Novitasari, Galla, E. A., Kasmiati, Trisnawaty, A. R., & Panga, N. J. (2023). Katokkon pepper (Capsicum chinense Jacq.) ploidy determination by morphological characteristic and flow cytometry analysis. AGRIVITA Journal of Agricultural Science, 45(2), 288-295. http://doi.org/10.17503/agrivita.v45i2.3633.
Tammu, R. M., Nuringtyas, T. R., & Daryono, B. S. (2021). Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19, 31. https://doi.org/10.1186/s43141-021-00131-4.
Tavan, M., Mirjalili, M. H., & Karimzadeh, G. (2015). In vitro polyploidy induction: changes in morphological, anatomical, and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tissue and Organ Culture, 122(3), 573–583. https://doi.org/10.1007/s11240-015-0789-0.
Tian, S., Ge, J., Ai, G., Jiang, J., Liu, Q., Chen, X., Liu, M., Yang, J., Zhang, X., & Yuan, L. (2021). A 2.09 Mb fragment translocation on chromosome 6 causes abnormalities during meiosis and leads to less seed watermelon. Horticulture Research, 8(1), 256. https://doi.org/10.1038/s41438-021-00687-9.
Wang, L. J., Zhang, Q., Cao, Q. Z., Gao, X., & Jia, G. X. (2020). An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell, Tissue and Organ Culture (PCTOC), 141, 499-510. https://doi.org/10.1007/s11240-020-01807-4.
Widoretno, W., Azriningsih, R., Sukmadjaja, D., & Rosyidah, M. (2023). In vitro induction and identification of polyploid Amorphophallus muelleri Blume plants by colchicine treatment. AGRIVITA Journal of Agricultural Science, 45(1), 87–97. http://doi.org/10.17503/agrivita.v45i1.3992.
Yan, Y.-J., Qin, S.-S., Zhou, N.-Z., Xie, Y., & He, Y. (2022). Effects of colchicine on polyploidy induction of Buddleja lindleyana seeds. Plant Cell, Tissue and Organ Culture (PCTOC), 149(3), 735–745. https://doi.org/10.1007/s11240-022-02245-0
Zhang, Y., Wang, B., Qi, S., Dong, M., Wang, Z., Li, Y., Chen, S., Li, B., & Zhang, J. (2019). Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. Planta, 249(3), 635–646. https://doi.org/10.1007/s00425-018-3029-0.
Zhang, Y., Zhang, S., Ren, J., Hou, X., Xiong, A., Li, Y., Li, S., & Xu, L. (2014). Induction of tetraploid in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) by colchicine treatment increases the ascorbic acid concentration. Journal of Horticultural Science and Biotechnology, 89(1), 53–60. https://doi.org/10.1080/14620316.2014.11513048.
Zhou, H. W., Zeng, W. D., & Yan, H. B., (2017). In vitro induction of tetraploids in cassava variety ‘Xinxuan 048’ using colchicine. Plant Cell Tissue and Organ Culture, 128(3), 723–729. https://doi.org/10.1007/s11240-016-1141-z.
Zhou, J., Guo, F., Fu, J., Xiao, Y., & Wu, J. (2020). In vitro polyploid induction using colchicine for Zingiber officinale Roscoe cv. ‘Fengtou’ ginger. Plant Cell Tissue Organ Culture (PCTOC), 142, 87–94. https://doi.org/10.1007/s11240-020-01842-1.
DOI: http://doi.org/10.17503/agrivita.v46i3.3936
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.