Incompatibility Selected Dwarf Rootstock and Scion of Citrus sp. regard to Abiotic Stress Tolerant

Norry Eka Palupi, Moch. Dawam Maghfoer, Nunun Barunawati, Didik Hariyono


This study aims to determine the response’s incompatibility of selected dwarf citrus rootstock after treated by abiotic stresses such as drought, waterlogging, and acidity on a scion. The results of this study was selected seedlings for sub-optimal lands in Indonesia with dwarf growth characteristic and compatible with the grafted-scion. The preliminary study has shown that there were 3 (three) selected rootstock accessions with dwarf characteristics, namely Citromello (Cit), Volkameriana (Volk), and Cleopatra Mandarin (CM). The seeds of these accessions were treated with 8% Polyethylene Glycol (PEG), 150% FC; 9 mM Al2SO4 at eight months after planting. Each rootstock was grafted with Pontianak orange (C. nobilis var. microcarpa). The results showed that Citromello (Cit) and Volkameriana (Volk) are incompatible rootstock and dwarf potential seedling. However, Cleopatra Mandarin has a compatibility with the grafted scion and is tolerant of abiotic stress treatments. The effect of abiotic treatment on Citromello resulted in 15% higher root length higher than other accessions. Furthermore, this variety has 40% dry weight and 25% lateral root numbers, respectively, by Al2SO4 and PEG. Meanwhile, Volkameriana had the 40% higher number of leaves.


Acidity; Drought; Rootstocks; Scions; Waterlogging

Full Text:



Adhikari, P. B, Xu, Q., & Notaguchi, M. (2022). Compatible graft establishment in fruit trees and its potential markers. Agronomy, 12(8), 1981. DOI

Ashari, A., Nurcahyani, E., Qudus, H. I., & Zulkifli. (2018). Analisis kandungan prolin planlet jeruk keprok batu 55 (Citrus reticulata Blanco Var. Crenatifolia) setelah diinduksi larutan atonik dalam kondisi cekaman kekeringan secara in vitro. Analit: Analytical and Environmental Chemistry, 3(1), 69-78. DOI

Bhuyan, M. H. M. B., Hasanuzzaman, M., Nahar, K., Al Mahmud, J., Parvin, K., Bhuiyan,,T. F., & Fujita, M. (2019). Plants behavior under soil acidity stress: Insight into morphophysiological, biochemical, and molecular responses. In M. Hasanuzzaman, K. R. Hakeem, K. Nahar, & H. F. Alharby (Eds.), Plant Abiotic Stress Tolerance (pp. 35–82). Cham: Springer. DOI

Bilova, T. E., Ryabova, D. N., & Anisimova, I. N. (2016). Molecular basis of the dwarfism character in cultivated plants. I. Growth distortions due to mutations of gibberellin metabolism and signaling (review). Agricultural Biology, 51(1), 3-16. DOI

Brown, L. K., George, T. S., Dupuy, L. X., & White, P. J. (2013). A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Annals of Botany, 112(2), 317–330. DOI

Cardoso, J. A., de la Cruz Jiménez, J., & Rao, I. M. (2014). Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB PLANTS, 6, plu017. DOI

Chen, J. J., Wang, L. Y., Immanen, J., Nieminen, K., Spicer, R., Helariutta, Y., … He, X.-Q. (2019). Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. New Phytologist, 224(1), 188–201. DOI

Chen, L., Tong, J., Xiao, L., Ruan, Y., Liu, J., Zeng, M., … Xu, L. (2016). YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany, 67(14), 4273–4284. DOI

Cimen, B., & Yesiloglu, T. (2016). Rootstock breeding for abiotic stress tolerance in citrus. In A. K. Shanker, & C. Shanker (Eds.), Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. IntechOpen. DOI

Darikova, J. A., Savva, Y. V., Vaganov, E. A., Grachev, A. M., & Kuznetsova, G. V. (2011). Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). Journal of Siberian Federal University, 4(1), 54-63. DOI

Donadio, L. C., Lederman, I. E., Roberto, S. R., & Stucchi, E. S. (2019). Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira de Fruticultura, 41(3), 1-12. DOI

Gandullo, J., Ahmad, S., Darwish, E., Karlova, R., & Testerink, C. (2021). Phenotyping tomato root developmental plasticity in response to salinity in soil rhizotrons. Plant Phenomics, 2021, 2760532. DOI

Huang, J.-G., Deslauriers, A., & Rossi, S. (2014). Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytologist, 203(3), 831–841. DOI

Huang, L., Yuan, J., Wang, H., Tan, X., & Niu, G. (2017). Aluminum stress affects growth and physiological characteristics in oil tea. HortScience, 52(11), 1601–1607. DOI

Jayswal, D. K., & Lal, N. (2020). Rootstock and scion relationship in fruit crops. Agriallis, 2(11), 10-16. Retrieved from PDF

Jung, J.-S., Muhammad, Z., Lee, K.-W., Mun, J.-Y., Park, H.-S., Kim, Y.-J., … Lee, S. H. (2015). Effects of polyethylene glycol-induced water stress on the physiological and biochemical responses of different sorghum genotypes. In M. M. Roy, D. R. Malaviya, V. K. Yadav, T. Singh, R. P. Sah, D. Vijay, & A. Radhakrishna (Eds.). Paper presented at The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection), New Delhi, India, November 20-24, 2015, (pp. 1-3). Range Management Society of India. Retrieved from website

Karlova, R., Boer, D., Hayes, S., & Testerink, C. (2021). Root plasticity under abiotic stress. Plant Physiology, 187(3), 1057–1070. DOI

Liao, X.-Y., Yang, L.-T., Lu, Y.-B., Ye, X., & Chen, L.-S. (2015). Roles of rootstocks and scions in aluminum-tolerance of citrus. Acta Physiologiae Plantarum, 37, 1743. DOI

Lopez-Serrano, L., Canet-Sanchis, G., Selak, G. V., Penella, C., San Bautista, A., López-Galarza, S., & Calatayud, Á. (2019). Pepper rootstock and scion physiological responses under drought stress. Frontiers in Plant Science, 10, 38. DOI

Maslukah, R., Yulianti, F., Roviq, M., & Maghfoer, M. D. (2019). Pengaruh polyethylene glycol (PEG) terhadap hardening planlet apel (Malus sp.) akibat hiperhidrisitas secara in vitro. Plantropica Journal of Agricultural Science, 4(1), 30-38. DOI

Neogy, M., Datta, J., Roy, A. K., & Mukherji, S. (2002). Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek. Journal of Environmental Biology, 23(4), 411-416. Retrieved from website

Özdemir, B., Yilmaz, A., Büyükkartal, H. N., & Okay, Y. (2019). Anatomical analysis of graft compatibility in some almond scion/rootstock combination. Tarim Bilimleri Dergisi, 25(1), 29-37. DOI

Pusat Data dan Sistem Informasi Pertanian. (2016). Outlook komoditas pertanian sub sektor hortikultura: Jeruk. Jakarta: Kementerian Pertanian. Retrieved from website

Rasool, A., Mansoor, S., Bhat, K. M., Hassan, G. I., Baba, T. R., Alyemeni, M. N., … Ahmad, P. (2020). Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science, 2020, 590847. DOI

Ren, B., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2016). Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE, 11(9), e0161424. DOI

Robin, A. H. K., Irving, L. J., Crush, J., Schnyder, H., Lattanzi, F. A., & Matthew, C. (2021). Time course of root axis elongation and lateral root formation in perennial ryegrass (Lolium perenne L.). Plants, 10(8), 1677. DOI

Schmitt, M., Watanabe, T., & Jansen, S. (2016). The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AoB PLANTS, 8, plw065. DOI

Shen, R. F., Chen, R. F., & Ma, J. F. (2006). Buckwheat accumulates aluminum in leaves but not in seeds. Plant and Soil, 284, 265–271. DOI

Shukla, A., Sharma, G., Ramteke, V., Kashyap, S., & Kurrey, V. (2016). Bonsai plants: Bring the forest home. Innovative Farming, 1(4), 155-158. Retrieved from website

Siecińska, J., & Nosalewicz, A. (2016). Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A review. In F. A. Gunther, & P. de Voogt (Eds.), Reviews of Environmental Contamination and Toxicology (vol. 243, pp. 1–26). Cham: Springer. DOI

Smolko, A., Bauer, N., Pavlović, I., Pěnčík, A., Novák, O., & Salopek-Sondi, B. (2021). Altered root growth, auxin metabolism and distribution in Arabidopsis thaliana exposed to salt and osmotic stress. International Journal of Molecular Sciences, 22(15), 7993. DOI

Terletskaya, N. V., Korbozova, N. K., Kudrina, N. O., Kobylina, T. N., Kurmanbayeva, M. S., Meduntseva, N. D., & Tolstikova, T. G. (2021). The influence of abiotic stress factors on the morphophysiological and phytochemical aspects of the acclimation of the plant Rhodiola semenowii Boriss. Plants, 10(6), 1196. DOI

Widoretno, W. (2011). Skrining untuk toleransi terhadap stres kekeringan pada 36 varietas kedelai pada fase perkecambahan. Berkala Penelitian Hayati, 16(2), 133–142. DOI

Zou, Y., Zhang, Y., & Testerink, C. (2022). Root dynamic growth strategies in response to salinity. Plant Cell Environment, 45(3), 695–704. DOI


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.