Nitrogen Sources Take Roles on Different Growth Balance of Red Beet (Beta vulgaris)
Abstract
One aim of productivity improvement on red beet was to restrain over-reducing the betacyanin as a secondary metabolite. Different nitrogen (N) sources were projected to affect growth, yield, and both primary and secondary plant metabolites. The research was carried out to find the effect of different sources and dosages of N on the production improvement and betacyanin. The N sources consisted of 5Ca(NO3)2NH4NO310H2O, NH4NO3NH4H2P04KCI, NO3H2P04KCI, CO(NH2)2, and (NH4)2SO4 with the N dosages of 75, 150, 225 kg N/ha and without N treatment as a control. The results showed that the enhancement of N dosages increased higher beet root fresh weight (BRFW) for about 42-50% than control. The 5Ca(NO3)2NH4NO310H2O and CO(NH2)2 increased BRFW and were higher than other N sources. The said N sources also contributed to 36% and 25% higher total betacyanin (BT) than those of (NH4)2SO4 and control, respectively. BRFW had the similar with BT, yet opposite patterns with betacyanin content (BC). The increase N dosages from any source diminish 20-33% BC, which was correlated with the increase of BRFW and BT following the sigmoidal pattern based on the logistics model during the growing period.
Keywords
Full Text:
PDFReferences
Albornoz, F. (2016). Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae, 205, 79-83. DOI
Babagil, A., Tasgin, E., Nadaroglu, H., & Kaymak, H. C. (2018). Antioxidant and antiradical activity of beetroot (Beta vulgaris L. var. conditiva Alef.) grown using different fertilizers. Journal of Chemistry, 2018, 7101605. DOI
Bangar, S. P., Sharma, N., Sanwal, N., Lorenzo, J. M., & Sahu, J. K. (2022). Bioactive potential of beetroot (Beta vulgaris). Food Research International, 158, 111556. DOI
Barunawati, N., Giehl, R. F. H., Bauer, B., & von Wirén, N. (2013). The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Frontiers in Plant Science, 4, 320. DOI
Carreón-Hidalgo, J. P., Franco-Vásquez, D. C., Gómez-Linton, D. R., & Pérez-Flores, L. J. (2022). Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Research International, 151, 110821. DOI
Chen, L., Huang, J., Liu, Q., Li, Z., Chen, X., Han, J., … Zhou X. (2022). Low R/FR ratio affects pakchoi’s growth and nitrate content under excess nitrate stress. Horticulturae, 8(3), 186. DOI
da Silva, D. V. T., dos Santos Baião, D., de Oliveira Silva, F., Alves, G., Perrone, D., Del Aguila, E. M., & Paschoalin, V. M. F. (2019). Betanin, a natural food additive: stability, bioavailability, antioxidant and preservative ability assessments. Molecules, 24(3), 458. DOI
El-Murtada Hassan Amin, M. (2011). Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 17-23. DOI
Esatbeyoglu, T., Wagner, A. E., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin—A food colorant with biological activity. Molecular Nutrition and Food Research, 59(1), 36-47. DOI
Fenn, L. B., & Taylor, R. M. (1991). Calcium stimulation of ammonium absorption in plants. In B. L. McMichael & H. Persson (Eds.), Plant Roots and their Environment (Vol. 24, pp. 39–47). Elsevier. DOI
Goldman, I. L., & Janick, J. (2021). Evolution of root morphology in table beet: Historical and iconographic. 12, 689926. DOI
Laufer, D., Nielsen, O., Wilting, P., Koch, H.-J., & Märländer, B. (2016). Yield and nitrogen use efficiency of fodder and sugar beet (Beta vulgaris L.) in contrasting environments of northwestern Europe. 73, 124–132. DOI
Li, Y., Wang, M., Teng, K., Dong, D., Liu, Z., Zhang, T., & Han, L. (2022). Transcriptome profiling revealed candidate genes, pathways and transcription factors related to nitrogen utilization and excessive nitrogen stress in perennial ryegrass. Scientific Reports, 12, 3353. DOI
Mampa, S. S., Maboko, M. M., Soundy, P., & Sivakumar, D. (2017). Nitrogen application and leaf harvesting improves yield and nutritional quality of beetroot. HortTechnology, 27(3), 337-343. DOI
Markoski, M., Bogevska, Z., Petrov, P., Tanaskovik, V., Davitkovska, M., & Spalevic, V. (2015). The impact of foliar nutrition on the yield of beetroot crop grown in high fertility soil. Agriculture and Forestry, 61(2), 235–242. DOI
Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J. C., & Pretzsch, H. (2012). Growth and defence in plants - Resource allocation at multiple scales. In M. M. Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. Mooney, E.-D. Schulze, & U. Sommer (Eds.). Ecological Studies, Vol. 220. Berlin: Springer. DOI
Neelwarne, B. (2012). Red beet biotechnology: Food and pharmaceutical applications. New York: Springer. DOI
Polturak, G., & Aharoni, A. (2018). “La Vie en Rose”: Biosynthesis, sources, and applications of betalain pigments. Molecular Plant, 11(1), 7–22. DOI
Saha, B. K., Rose, M. T., Wong, V. N. L., Cavagnaro, T. R., & Patti, A. F. (2019). A slow release brown coal-urea fertiliser reduced gaseous N loss from soil and increased silver beet yield and N uptake. Science of The Total Environment, 649, 793–800. DOI
Salahas, G., Papasavvas, A., Giannakopoulos, E., Tselios, T., Konstantopoulou, H., & Savvas, D. (2011). Impact of nitrogen deficiency on biomass production, leaf gas exchange, and betacyanin and total phenol concentrations in red beet (Beta vulgaris L. ssp. vulgaris) plants. European Journal of Horticultural Science, 76(5-6), 194–200. Retrieved from PDF
Sapkota, A., Sharma, M. D., Giri, H. N., Shrestha, B., & Panday, D. (2021). Effect of organic and inorganic sources of nitrogen on growth, yield, and quality of beetroot varieties in Nepal. Nitrogen, 2(3), 378-391. DOI
Sitompul, S. M., & Zulfati, A. P. (2019). Betacyanin and growth of beetroot (Beta vulgaris L.) in response to nitrogen fertilization in a tropical condition. AGRIVITA Journal of Agricultural Science, 41(1), 40–47. DOI
Sitompul, S. M., Roviq, M., Yudha, A., Khesia, S. A., Avyneysa, N. J., & Yolanda. (2020). Plant growth of beetroots (Beta vulgaris L.) with nitrogen supply at suboptimal elevations in a tropical region. AGRIVITA Journal of Agricultural Science, 42(2), 272–282. DOI
Sokolova, D. V., Shvachko, N. A., Mikhailova, A. S., & Popov, V. S. (2022). Betalain content and morphological characteristics of table beet accessions: Their interplay with abiotic factors. Agronomy, 12(5), 1033. DOI
Stagnari, F., Ficcadenti, N., Manetta, A. C., Platani, C., Dattoli, M. A., & Galieni, A. (2022). Modulation of light and nitrogen for quality-traits improvement: A case study of altino sweet pepper. Horticulturae, 8(6), 499. DOI
Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216, 303–311. DOI
Varga, I., Jovi, J., Rastija, M., Kulundžić, A. M., Zebec, V., Lončarić, Z., … Antunović, M. (2022). Efficiency and management of nitrogen fertilization in sugar beet as spring crop: A review. Nitrogen, 3(2), 170-185; DOI
Wang, C.-Q., & Wang, B.-S. (2007). Ca2+-calmodulin is involved in betacyanin accumulation induced by dark in c3 halophyte Suaeda salsa. Journal of Integrative Plant Biology, 49(9), 1378–1385. DOI
Watari, M., Ikeura, H., Tsuge, K., & Motoki, S. (2017). Betalain content of different varieties, growth stages, and parts of beet (Beta vulgaris L.). Horticultural Research, 16(3), 301–308. DOI
DOI: http://doi.org/10.17503/agrivita.v41i0.3870
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.