Evaluation of Arbuscular Mycorrhizal Cultures in Increasing Phosphorus Uptake and Maize Growth Compared to Chemical and Organic Fertilizers on an Andisol

Vita Ratri Cahyani, Nadine Yuki Azzahra, Retno Rosariastuti

Abstract


There is still limited information about the formulation of arbuscular mycorrhizal (AM) fungi culture with the specific ability to overcome P retention in Andisols. The purpose of this study is to evaluate the functional ability of eight AM fungi cultures consisting of four cultures from the generation I (A1I31, A2I21, A0I31, and A0I21) and four cultures from generation II (A1I32, A2I22, A0I32, and A0I22) in dealing with P constraints on an Andisol, compared with the application of fresh AM fungi inocula isolated from natural soils, synthetic chemical fertilizers (CF), rice straw (RS) compost, and several combination treatments including Bio-RP Nutrition. The highest functional ability in increasing P uptake and maize growth on Andisol is obtained by A1I32, followed by A2I22 and A0I22, indicating that AM fungi cultures generation II exhibited higher effectiveness than generation I. The increase of P uptake and maize shoot dry weight yielded by those three AM fungi cultures were in the range of 80-97% and 89-103% of T14 (CF 100%), indicating the high potential biofertilizers for reducing the use of chemical fertilizers. By  cultivation  plate  method,  the  present  findings  also  confirmed that  AM   fungi   inoculation   affecting  significantly   the   abundance and  the  composition  of  foliar  endophytic  bacterial  communities.


Keywords


Biofertilizer; Fungi Functional Abilities; Endophytic Bacteria; P Constraints

Full Text:

PDF

References


Abdel-Fattah, G. M., & Asrar, A. W. A. (2012). Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiologiae Plantarum, 34, 267–277. https://doi.org/10.1007/s11738-011-0825-6

Ali, M. M., Al-Ani, A., Eamus, D., & Tan, D. K. Y. (2012). A new image processing based technique to determine chlorophyll in plants. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(10), 1323–1328. https://idosi.org/aejaes/jaes12(10)12/9.pdf

Anda, M., & Dahlgren, R. A. (2020). Long-term response of tropical Andisol properties to conversion from rainforest to agriculture. Catena, 194, 104679. https://doi.org/10.1016/j.catena.2020.104679

Andrino, A., Guggenberger, G., Sauheitl, L., Burkart, S., & Boy, J. (2021). Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biology and Fertility of Soils, 57, 47–64. https://doi.org/10.1007/s00374-020-01505-5

Barra, P. J., Inostroza, N. G., Acuña, J. J., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2016). Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology, 102, 80–91. https://doi.org/10.1016/j.apsoil.2016.02.014

Barra, P. J., Pontigo, S., Delgado, M., Parra–Almuna, L., Duran, P., Valentine, A. J., Jorquera, M. A., & Mora, M. de la L. (2019). Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biology and Biochemistry, 136, 107516. https://doi.org/10.1016/j.soilbio.2019.06.012

Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x

Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait Rahou, Y., Raklami, A., Oufdou, K., Wahbi, S., & Meddich, A. (2021). Green Compost Combined with Mycorrhizae and Rhizobia: A Strategy for Improving Alfalfa Growth and Yield Under Field Conditions. Gesunde Pflanzen, 73(2), 193–207. https://doi.org/10.1007/s10343-020-00537-z

Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6, 1559. https://doi.org/10.3389/fmicb.2015.01559

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—Total. In A. L. Page (Ed.), Agronomy Monographs (1st ed., Vol. 9, pp. 595–624). Wiley. https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Cahyani, V. R. (2008). Sebaran fungi mikorisa arbuskular di daerah Surakarta dan sekitarnya (Distribution of Arbuscular mycorrhiza fungi in and around Surakarta area). Sains Tanah-Jurnal Ilmiah Ilmu Tanah dan Agroklimatologi, 5(1), 37–48. https://core.ac.uk/download/pdf/230908462.pdf

Cahyani, V. R., Alfin, M. R., & Hanifah, N. (2019). Screening of arbuscular mycorrhiza isolated from rhizosphere of elephant grass from seven soil types for biofertilizer in zeolite pot culture. Bulgarian Journal of Agricultural Science, 25(4), 724–731. https://journal.agrojournal.org/page/en/details.php?article_id=2165

Cahyani, V. R., Suryanti, Minardi, S., & Dewi, W. S. (2023). Consistency of mycorrhizal effectiveness on maize growth and P uptake in two generations of pot culture using Andisol-based media. AGRIVITA Journal of Agricultural Science, 45(2), 322–339. https://doi.org/10.17503/agrivita.v45i2.3865

Cipriano, M. A. P., Freitas-Iório, R. de P., Dimitrov, M. R., de Andrade, S. A. L., Kuramae, E. E., & da Silveira, A. P. D. (2021). Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-metabolites in sugarcane seedling. Microorganisms, 9, 479. https://doi.org/10.3390/microorganisms9030479

Curaqueo, G., Roldán, A., Mutis, A., Panichini, M., Pérez-San Martín, A., Meier, S., & Mella, R. (2021). Effects of biochar amendment on wheat production, mycorrhizal status, soil microbial community, and properties of an Andisol in Southern Chile. Field Crops Research, 273, 108306. https://doi.org/10.1016/j.fcr.2021.108306

de Assis, R. M. A., Carneiro, J. J., Medeiros, A. P. R., de Carvalho, A. A., da Cunha Honorato, A., Carneiro, M. A. C., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Industrial Crops and Products, 158, 112981. https://doi.org/10.1016/j.indcrop.2020.112981

Delfim, J., Gerding, M., & Zagal, E. (2020). Phosphorus fractions in Andisol and Ultisol inoculated with Bacillus thuringiensis and phosphorus uptake by wheat. Journal of Plant Nutrition, 43(18), 2728–2739. https://doi.org/10.1080/01904167.2020.1793176

Duta, F. P., França, F. P. De, Sérvulo, E. F. C., Lopes, L. M. D. A., Costa, A. C. A. Da, & Barros, A. (2004). Effect of Process Parameters on Production of a Biopolymer by Rhizobium sp. E. Applied Biochemistry and Biotechnology, 113–116, 639–652. https://doi.org/10.1385/ABAB:114:1-3:639

El Amerany, F., Rhazi, M., Wahbi, S., Taourirte, M., & Meddich, A. (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261, 109015. https://doi.org/10.1016/j.scienta.2019.109015

Elbon, A., & Whalen, J. K. (2015). Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: A review. Biological Agriculture and Horticulture, 31(2), 73–90. https://doi.org/10.1080/01448765.2014.966147

Elgharably, A., & Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, 18, 100345. https://doi.org/10.1016/j.rhisph.2021.100345

Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., & Khodaei-Joghan, A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106–114. https://doi.org/10.1016/j.agwat.2012.11.007

Guo, W., Zhao, R., Zhao, W., Fu, R., Guo, J., Bi, N., & Zhang, J. (2013). Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Applied Soil Ecology, 72, 85–92. https://doi.org/10.1016/j.apsoil.2013.06.001

Han, Z., Zhang, Z., Li, Y., Wang, B., Xiao, Q., Li, Z., Geng, X., Lin, K., Huang, T., Li, X., & Chen, J. (2023). Effect of Arbuscular mycorrhizal fungi (AMF) inoculation on endophytic bacteria of lettuce. Physiological and Molecular Plant Pathology, 126, 102036. https://doi.org/10.1016/j.pmpp.2023.102036

Hao, L., Zhang, Z., Hao, B., Diao, F., Zhang, J., Bao, Z., & Guo, W. (2021). Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212, 111996. https://doi.org/10.1016/j.ecoenv.2021.111996

He, Y. M., Fan, X. M., Zhang, G. Q., Li, B., Li, T. G., Zu, Y. Q., & Zhan, F. D. (2020). Effects of arbuscular mycorrhizal fungi and dark septate endophytes on maize performance and root traits under a high cadmium stress. South African Journal of Botany, 134, 415–423. https://doi.org/10.1016/j.sajb.2019.09.018

Hristozkova, M., Geneva, M., Stancheva, I., Boychinova, M., & Djonova, E. (2016). Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 101, 57–63. https://doi.org/10.1016/j.apsoil.2016.01.008

Huang, T., Xie, K., Zhang, Z., Zhang, Q., Li, Y., Lin, S., Zhou, J., Chen, J., & Li, X. (2024). The colonization of the arbuscular mycorrhizal fungus Rhizophagus irregularis affects the diversity and network structure of root endophytic bacteria in maize. Scientia Horticulturae, 326, 112774. https://doi.org/10.1016/j.scienta.2023.112774

IJdo, M., Cranenbrouck, S., & Declerck, S. (2011). Methods for large-scale production of AM fungi: Past, present, and future. Mycorrhiza, 21, 1–16. https://doi.org/10.1007/s00572-010-0337-z

Ishaq, L., Adu Tae, A. S. J., Airthur, M. A., & Bako, P. O. (2021). Effect of single and mixed inoculation of arbuscular mycorrhizal fungi and phosphorus fertilizer application on corn growth in calcareous soil. Biodiversitas, 22(4), 1920–1926. https://doi.org/10.13057/biodiv/d220439

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57, 503–507. https://doi.org/10.1007/s00284-008-9276-8

Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23(2), 95–103. https://doi.org/10.1016/j.tree.2007.10.008

Liu, P., Jia, S., He, X., Zhang, X., & Ye, L. (2017). Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Chemosphere, 188, 455–464. https://doi.org/10.1016/j.chemosphere.2017.08.162

Ll, H., Li, X., Dou, Z., Zhang, J., & Wang, C. (2012). Earthworm (Aporrectodea trapezoides)-mycorrhiza (Glomus intraradices) interaction and nitrogen and phosphorus uptake by maize. Biology and Fertility of Soils, 48, 75–85. https://doi.org/10.1007/s00374-011-0610-0

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In Plant Nutrients and Abiotic Stress Tolerance (pp. 171–190). https://doi.org/10.1007/978-981-10-9044-8

Masdariah, Sembiring, M., Mukhlis, & Rosneli. (2019). The increasing of phosphorus availability and corn growth (Zea mays L.) with the application of phosphate solubilizing microbes and some sources of organic materials on Andisol. IOP Conference Series: Earth and Environmental Science, 260, 012166. https://doi.org/10.1088/1755-1315/260/1/012166

Mbusango, A., Nurbaity, A., Fitriatin, B. N., Solihin, M. A., & Istifadah, N. (2019). Arbuscular mycorrhiza increased N, P, K, and Fe uptake, growth and yield of vegetables grown on Andisols with different rates of NPK fertilizers. IOP Conference Series: Earth and Environmental Science, 393, 012009. https://doi.org/10.1088/1755-1315/393/1/012009

Mcdaniel, P. A., Lowe, D. J., Arnalds, O., Ping, C.-L. (2012). Andisols. In Huang, P. M., Li, Y., & Sumner, M. E. (Eds,), Handbook of Soil Sciences. 2nd edition. Vol.1: Properties and Processes (pp.33-29-33.48). Boca Raton, FL. CRC Press (Taylor & Francis). https://researchcommons.waikato.ac.nz/server/api/core/bitstreams/14fc9ab0-7575-4d83-97a9-97fe80975916/content

Meglouli, H., Lounès-Hadj Sahraoui, A., Magnin-Robert, M., Tisserant, B., Hijri, M., & Fontaine, J. (2018). Arbuscular mycorrhizal inoculum sources influence bacterial, archaeal, and fungal communities’ structures of historically dioxin/furan-contaminated soil but not the pollutant dissipation rate. Mycorrhiza, 28(7), 635–650. https://doi.org/10.1007/s00572-018-0852-x

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Mustafa, G., Randoux, B., Tisserant, B., Fontaine, J., Magnin-Robert, M., Lounès-Hadj Sahraoui, A., & Reignault, Ph. (2016). Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza, 26, 685–697. https://doi.org/10.1007/s00572-016-0698-z

Naeem, M. A., Khalid, M., Aon, M., Abbas, G., Amjad, M., Murtaza, B., Khan, W. ud D., & Ahmad, N. (2018). Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. Journal of Plant Nutrition, 41(1), 112–122. https://doi.org/10.1080/01904167.2017.1381734

Nath, D. J., Ozah, B., Baruah, R., Barooah, R. C., & Borah, D. K. (2011). Effect of integrated nutrient management on soil enzymes, microbial biomass carbon and bacterial populations under rice (Oryza sativa)-wheat (Triticum aestivum) sequence. Indian Journal of Agricultural Sciences, 81(12), 1143-1148. https://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/13311

Neris, J., Jiménez, C., Fuentes, J., Morillas, G., & Tejedor, M. (2012). Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). Catena, 98, 55–62. https://doi.org/10.1016/j.catena.2012.06.006

Nobile, C. M., Bravin, M. N., Becquer, T., & Paillat, J. M. (2020). Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 239, 124709. https://doi.org/10.1016/j.chemosphere.2019.124709

Osorio, N. W., & Habte, M. (2014). Soil phosphate desorption induced by a phosphate-solubilizing fungus. Communications in Soil Science and Plant Analysis, 45, 451–460. https://doi.org/10.1080/00103624.2013.870190

Owen, D., Williams, A. P., Griffith, G. W., & Withers, P. J. A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Applied Soil Ecology, 86, 41–54. https://doi.org/10.1016/j.apsoil.2014.09.012

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-IN18. https://doi.org/10.1016/s0007-1536(70)80110-3

Poblete-Grant, P., Suazo-Hernández, J., Condron, L., Rumpel, C., Demanet, R., Malone, S. L., & Mora, M. de L. L. (2020). Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile. Geoderma Regional, 21, e00271. https://doi.org/10.1016/j.geodrs.2020.e00271

Poosakkannu, A., Nissinen, R., & Kytöviita, M. M. (2017). Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition. Mycorrhiza, 27, 801–810. https://doi.org/10.1007/s00572-017-0796-6

Rehman, M. Z. U., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A., Sabir, M., Ahmad, H. R., & Ok, Y. S. (2016). Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023

Reva, M., Cano, C., Herrera, M. A., & Bago, A. (2021). Arbuscular mycorrhizal inoculation enhances endurance to severe heat stress in three horticultural crops. HortScience, 56(4), 396–406. https://doi.org/10.21273/HORTSCI14888-20

Seguel, A., Barea, J. M., Cornejo, P., & Borie, F. (2015). Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium tolerance in barley growing in acid soils. Crop and Pasture Science, 66(7), 696–705. https://doi.org/10.1071/CP14305

Séry, D. J. M., Kouadjo, Z. G. C., Voko, B. R. R., & Zézé, A. (2016). Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Frontiers in Microbiology, 7, 2063. https://doi.org/10.3389/fmicb.2016.02063

Soil Survey Staff. (2022). Keys to soil taxonomy. 13th edition. USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf

Sukarman, Dariah, A., & Suratman. (2020). Tanah vulkanik di lahan kering berlereng dan potensinya untuk pertanian di Indonesia (Volcanic soils in sloping dry land and its potential for agriculture in Indonesia). Jurnal Litbang Pertanian, 39(1), 21-34. https://repository.pertanian.go.id/server/api/core/bitstreams/e1b69085-bf33-4780-b450-a3c270921462/content

Takahashi, T., & Dahlgren, R. A. (2016). Nature, properties and function of aluminum-humus complexes in volcanic soils. Geoderma, 263, 110–121. https://doi.org/10.1016/j.geoderma.2015.08.032

Takahashi, T., & Shoji, S. (2002). Distribution and classification of volcanic ash soils. Global Environmental Research, 6, 83-97. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distribution+and+classification+of+volcanic+ash+soils&btnG=

Thilagar, G., Bagyaraj, D. J., & Rao, M. S. (2016). Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Scientia Horticulturae, 198, 27–35. https://doi.org/10.1016/j.scienta.2015.11.021

Ujvári, G., Turrini, A., Avio, L., & Agnolucci, M. (2021). Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 31(5), 527–544. https://doi.org/10.1007/s00572-021-01040-7

Walkley, A. (1947). A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils: Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents. Soil Science, 63(4), 251–264. https://doi.org/10.1097/00010694-194704000-00001

Wang, C., White, P. J., & Li, C. (2017). Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza, 27(4), 369–381. https://doi.org/10.1007/s00572-016-0757-5

Wang, Z., Chen, Z., Xu, Z., & Fu, X. (2019). Effects of Phosphate-Solubilizing Bacteria and N2-fixing Bacteria on Nutrient Uptake, Plant Growth, and Bioactive Compound Accumulation in Cyclocarya paliurus (Batal.) Iljinskaja. Forests, 10(9), 772. https://doi.org/10.3390/f10090772

Wang, Z.-G., Bi, Y.-L., Jiang, B., Zhakypbek, Y., Peng, S.-P., Liu, W.-W., & Liu, H. (2016). Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Scientific Reports, 6(1), 34336. https://doi.org/10.1038/srep34336

Wickramatilake, A. R. P., Kouno, K., & Nagaoka, T. (2010). Compost amendment enhances the biological properties of Andosols and improves phosphorus utilization from added rock phosphate. Soil Science and Plant Nutrition, 56, 607–616. https://doi.org/10.1111/j.1747-0765.2010.00493.x

Xin, X., Qin, S., Zhang, J., Zhu, A., Yang, W., & Zhang, X. (2017). Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Research, 208, 27–33. https://doi.org/10.1016/j.fcr.2017.03.011

Yang, W., Guo, Y., Wang, X., Chen, C., Hu, Y., Cheng, L., Gu, S., & Xu, X. (2017). Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Applied Soil Ecology, 121, 214–222. https://doi.org/10.1016/j.apsoil.2017.10.005

Yin, Z., Fan, B., Roberts, D. P., Chen, S., Shi, F., Buyer, J. S., & Jiang, H. (2017). Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus Aspergillus aculeatus P93. Journal of Agriculture Biotechnology, 2(2), 1-10. http://dx.doi.org/10.20936/JAB/170201

Zarcinas, B. A., Cartwright, B., & Spouncer, L. R. (1987). Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 18(1), 131–146. https://doi.org/10.1080/00103628709367806

Zhang, W., Cao, J., Zhang, S., & Wang, C. (2016). Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress. Applied Soil Ecology, 107, 214–223. https://doi.org/10.1016/j.apsoil.2016.06.005

Zhao, R., Guo, W., Bi, N., Guo, J., Wang, L., Zhao, J., & Zhang, J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology, 88, 41–49. https://doi.org/10.1016/j.apsoil.2014.11.016




DOI: http://doi.org/10.17503/agrivita.v46i3.3867

Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.