Consistency of Mycorrhizal Effectiveness on Maize Growth and P Uptake in Two Generations of Pot Culture Using Andisol-Based Media
Abstract
The functional roles of Arbuscular Mycorrhiza (AM) in soils with P limitations are well documented. However, the protocol to produce effective AM inocula was still limited. This research aims at obtaining the effective AM culture in handling P constraints for maize growth on Andisols. The first experiment of pot culture I was to propagate and examine the effectiveness of AM isolates by using a factorial completely randomized design with two factors, A=media (A0: zeolite; A1: representative media=Andisol Tengaran; A2: typical media=a mixture of Andisol Tengaran+Tawangmangu; A3: typical media+Bio-RP nutrition; A4: Inceptisol) and I = AM inoculum source (I0: no inoculum; I1: AM from Andisol Tengaran; I2: AM from Andisol Tengaran + Tawangmangu; I3: AM from 8 soil types), with six replications. The second experiment investigated the consistency of mycorrhizal effectiveness by reculturing AM cultures generation I to pot cultures generation II with the same composition of the respective media. The combination treatments of A1I3, A2I2, A0I3, and A4I3 (AM cultures generation I), continued by A1I32, A2I22, A0I32, and A4I32 (AM cultures generation II) showed consistently the highest AM infectivity and effectiveness on maize growth and P uptake on Andisol-based media, and on the comparison media of zeolite and Inceptisol media, respectively.
Keywords
Full Text:
PDFReferences
Agnolucci, M., Palla, M., Cristani, C., Cavallo, N., Giovannetti, M., Angelis, M. De, Gobbetti, M., & Minervini, F. (2019). Beneficial plant microorganisms affect the endophytic bacterial communities of durum wheat roots as detected by different molecular approaches. Frontiers in Microbiology, 10(OCT), 1–14. DOI
Anda, M., & Dahlgren, R. A. (2020). Long-term response of tropical Andisol properties to conversion from rainforest to agriculture. Catena, 194, 104679. DOI
Barra, P. J., Inostroza, N. G., Acuña, J. J., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2016). Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Applied Soil Ecology, 102, 80–91. DOI
Borie, F., Redel, Y., Rubio, R., Rouanet, J. L., & Barea, J. M. (2002). Interactions between crop residues application and mycorrhizal developments and some soil-root interface properties and mineral acquisition by plants in an acidic soil. Biology and Fertility of Soils, 36, 151–160. DOI
Borie, F., Aguilera, P., Castillo, C., Valentine, A., Seguel, A., Barea, J. M., & Cornejo, P. (2019). Revisiting the nature of phosphorus pools in Chilean volcanic soils as a basis for arbuscular mycorrhizal management in plant P acquisition. Journal of Soil Science and Plant Nutrition, 19(2), 390–401. DOI
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–46.
Bremner, J., & Mulvaney, C. (1982). Nitrogen—total. In Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624).
Cahyani, V. R. (2008). Sebaran Fungi Mikoriza Arbuskular di daerah Surakarta dan Sekitarnya (Distribution of Arbuscular Mycorrhiza Fungi in and Around Surakarta Area). SAINS TANAH - Journal of Soil Science and Agroclimatology, 5(1), 37–48. DOI
Cahyani, V. R., Alfin, M. R., & Hanifah, N. (2019). Screening of arbuscular mycorrhiza isolated from rhizosphere of elephant grass from seven soil types for biofertilizer in zeolite pot culture. Bulgarian Journal of Agricultural Science, 25(4), 724–731.
Cahyani, V. R., Kinasih, D. W., Purwanto, P., & Syamsiyah, J. (2022). Spore reproduction, glomalin content, and maize growth on mycorrhizal pot culture using acid mineral soil-based media. SAINS TANAH - Journal of Soil Science and Agroclimatology, 19(1), 111. DOI
Chaiyasen, A., Chaiya, L., Douds, D. D., & Lumyong, S. (2016). Influence of host plants and soil diluents on arbuscular mycorrhizal fungus propagation for on-farm inoculum production using leaf litter compost and agrowastes. Biological Agriculture and Horticulture, 1–16. DOI
Crossay, T., Cavaloc, Y., Majorel, C., Redecker, D., Medevielle, V., & Amir, H. (2020). Combinations of different arbuscular mycorrhizal fungi improve fitness and metal tolerance of sorghum in ultramafic soil. Rhizosphere, 14, 100204. DOI
Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Cavaloc, Y., & Amir, H. (2019). Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza. DOI
Duffková, R., Fučík, P., Jurkovská, L., & Janoušková, M. (2019). Experimental evaluation of the potential of arbuscular mycorrhiza to modify nutrient leaching in three arable soils located on one slope. Applied Soil Ecology, 143, 116–125. DOI
Fasusi, O. A., Amoo, A. E., & Babalola, O. O. (2021). Propagation and characterization of viable arbuscular mycorrhizal fungal spores within maize plant (Zea mays L.). Journal of the Science of Food and Agriculture, 101(14), 5834–5841. DOI
Gaur, A., & Adholeya, A. (2000). Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza, 10, 43–48. DOI
Godbold, D. L., Hoosbeek, M. R., Lukac, M., Cotrufo, M. F., Janssens, I. A., Ceulemans, R., Polle, A., Velthorst, E. J., Scarascia-Mugnozza, G., De Angelis, P., Miglietta, F., & Peressotti, A. (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil, 281(1–2), 15–24. DOI
Hendry, G. A. F., & Grime, J. P. (1993). Methods in Comparative Plant Ecology: A Laboratory Manual. The Journal of Ecology, 1–245. DOI
Herrera, H., Sanhueza, T., Novotná, A., Charles, T. C., & Arriagada, C. (2020). Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from Southern Chile. Diversity, 12(2), 1–12. DOI
Ianson, D. C., & Allen, M. F. (1986). The Effects of Soil Texture on Extraction of Vesicular-Arbuscular Mycorrhizal Fungal Spores from Arid Sites. Mycologia, 78(2), 164–168. DOI
Kilic, K., Yalcin, H., Durak, A., & Dogan, H. M. (2018). Andisols of Turkey: An example from the Cappadocian Volcanic Province. Geoderma, 313, 112–125. DOI
Kim, K., Yim, W., Trivedi, P., Madhaiyan, M., Boruah, H. P. D., Islam, M. R., Lee, G., & Sa, T. (2010). Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant and Soil, 327(1), 429–440. DOI
Klugh, K. R., & Cumming, J. R. (2007). Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiology, 27(8), 1103–1112. DOI
Li, X., Kang, X., Zou, J., Yin, J., Wang, Y., Li, A., & Ma, X. (2023). Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.–mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotoxicology and Environmental Safety, 249(December 2022). DOI
Ma, J., Wang, W., Yang, J., Qin, S., Yang, Y., Sun, C., Pei, G., Zeeshan, M., Liao, H., Liu, L., & Huang, J. (2022). Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biology, 22(1), 64. DOI
Ma, X., Li, X., & Ludewig, U. (2021). Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. In Annals of Botany (Vol. 127, Issue 1). DOI
Martínez, A. J., Osorio, V. N., & Garrido, P. J. (2019). Native arbuscular mycorrhizal fungi effectiveness in soils with different agricultural uses. Revista MVZ Cordoba, 24(2), 7256–7261. DOI
Ortas, I. (2010). Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal of Agricultural Research, 8, 16–22. DOI
Oseni, T. O., Shongwe, N. S., & Masarirambi, M. T. (2010). Effect of arbuscular mycorrhiza (AM) inoculation on the performance of tomato nursery seedlings in vermiculite. International Journal of Agriculture and Biology, 12(5), 789–792. DOI
Pacioni, G. (1992). Wet-sieving and Decanting Techniques for the Extraction of Spores of Vesicular-arbuscular Fungi. Methods in Microbiology, 24, 317–322. DOI
Parfitt, R. L. (2009). Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals, 44, 135–155. DOI
Parihar, M., Rakshit, A., Rana, K., Prasad Meena, R., & Chandra Joshi, D. (2020). A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum L.) under salt stress. Rhizosphere, 15, 100235. DOI
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-IN18. DOI
Qiu, L., Bi, Y., Jiang, B., Wang, Z., Zhang, Y., & Zhakypbek, Y. (2019). Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. Journal of Arid Land, 11(1), 135–147. DOI
Rahman, M. H., Okubo, A., Sugiyama, S., & Mayland, H. F. (2008). Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil and Tillage Research, 101, 10–19. DOI
Rubio, R., Borie, F., Schalchli, C., Castillo, C., & Azcón, R. (2003). Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology, 23(3), 245–255. DOI
Sawers, R. J. H., Svane, S. F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M. N., González-Muñoz, E., Chávez Montes, R. A., Baxter, I., Goudet, J., Jakobsen, I., & Paszkowski, U. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 214(2), 632–643. DOI
Séry, D. J. M., Kouadjo, Z. G. C., Voko, B. R. R., & Zézé, A. (2016). Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Frontiers in Microbiology, 7(DEC), 1–13. DOI
Silvani, V. A., Statello, M., Scorza, M. V., Pérgola, M., Colombo, R. P., & Godeas, A. M. (2019). A novel in vitro methodology to cultivate arbuscular mycorrhizal fungi combining soil and synthetic media. Symbiosis. DOI
Soil Survey Staff. (2022). Keys to soil taxonomy. In Soil Conservation Service (Vol. 13). PDF
Souza, T. (2015). Handbook of arbuscular mycorrhizal fungi. In Handbook of Arbuscular Mycorrhizal Fungi. DOI
Sukarman, S. & Dariah, A. (2014). Tanah Andosol di Indonesia: Karakteristik, potensi, kendala, dan pengelolaannya untuk pertanian. In Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Kementerian Pertanian. PDF
Sundram, S., Meon, S., Seman, I. A., & Othman, R. (2011). Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. Journal of Microbiology, 49(4), 551–557. DOI
Tamayo-Velez, A., & Osorio, N. W. (2017). Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery. Botany, 1–17. DOI
Tawaraya, K. (2003). Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 49(5), 655–668. DOI
Thonar, C., Schnepf, A., Frossard, E., Roose, T., & Jansa, J. (2011). Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant and Soil, 339(1), 231–245. DOI
Urcoviche, R. C., Gazim, Z. C., Dragunski, D. C., Barcellos, F. G., & Alberton, O. (2015). Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products, 67, 103–107. DOI
Utami, S. R., Kurniawan, S., Situmorang, B., & Rositasari, N. D. (2012). Increasing P-Availability and P-Uptake Using Sugarcane Filter Cake and Rice Husk Ash to Improve Chinesse Cabbage (Brassica Sp) Growth in Andisol, East Java. Journal of Agricultural Science, 4(10), 153–160. DOI
Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128–136. DOI
Vestberg, M., & Kukkonen, S. (2009). Microbiologically improved peat-based media for nursery production by addition of arbuscular mycorrhizal fungi. Acta Horticulturae, 403–410. DOI
Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. DOI
Wang, G., Jin, Z., George, T. S., Feng, G., & Zhang, L. (2023). Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytologist. DOI
Wheal, M. S., Fowles, T. O., & Palmer, L. T. (2011). A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Analytical Methods, 3(12), 2854. DOI
Zarcinas, B. A., Cartwright, B., & Spouncer, L. R. (1987). Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 18(1), 131–146. DOI
Zhang, Z., Zhang, J., Xu, G., Zhou, L., & Li, Y. (2018). Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forests. DOI
DOI: http://doi.org/10.17503/agrivita.v45i2.3865
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.