Organics Acids from Cocoa Pod Waste Inoculated by Basidiomycota Fungi to Enhance the Performance of Shallots

Iradhatullah Rahim, Harsani Harsani, Hakzah Hakzah, Selis Meriem, Elkheir Hassaballah Abdallah Ahamed

Abstract


Excessive agricultural waste potentially causes serious pollution issues by farming practices. The potency of Basidiomycota’s fungi to degrade biomass for a safe practice might be considered to cope with this issue. This study aims to determine Basidiomycota fungi’s ability to produce organic acids after being inoculated on cocoa husks at various fermentation periods (20 and 40 days) and evaluate the effect of humic acid from those fermented cocoa husks on the growth and productivity of shallots. This research is carried out in three stages; the first is composting process from cocoa husks. The next is the acid-base extraction of cocoa pod husk compost to produce humic and fulvic acid. And the last is the application of humic acid to shallot plants. The results show that composting for 40 days produced higher levels of humic and fulvic acids. Inoculation with Coprinus sp produced the highest levels of humic acid but is not different with Pleurotus sp. Applying 100 ml/l of humic acid to shallots shows the best growth, while the concentration of 400 ml/l has the best production. This study presents the potential practice of cocoa pod residue and Basidiomycota fungi to increase agricultural commodities’ productivity agents.


Keywords


Acid-base extraction; availabilty of nutrients; decomposition; soil fertility

Full Text:

PDF

References


Agustian, Susila, P., & Gusnidar. (2004). Pembentukan asam humat dan fulvat selama pembuatan kompos jerami padi. Jurnal Solum, 1(1), 9-14. DOI

Alemawor, F., Dzogbefia, V. P., Oddoye, E. O. K., & Oldham, J. H. (2009). Effect of Pleurotus ostreatus fermentation on cocoa pod husk composition: Influence of fermentation period and Mn2+ supplementation on the fermentation process. African Journal of Biotechnology, 8(9), 1950-1958. Retrieved from website

Al-Mallahi, J., Tahhan, R., & Khresat, S. (2020). Quality of fresh plant residue affects sequestration of residue derived organic material by humic acid. Eurasian Journal of Soil Science, 9(3), 222–230. DOI

Aqueveque, P., Anke, T., Anke, H., Sterner, O., Becerra, J., & Silva, M. (2005). Favolon B, a new triterpenoid isolated from the Chilean Mycena sp. strain 96180. The Journal of Antibiotics, 58, 61–64. DOI

Ashwini, N., Kumar, P., Joshi, A. K., Sharma, N. C., Sharma, N., & Sharma, N. (2022). Synergistic action of humic acid substances and bio-inoculants in guava (Psidium guajava L.): impact on growth traits, fruiting, nutrient profiling and rhizosphere stochiometry in meadow rainy season plant-soil interface. Journal of Plant Nutrition, 2022, 1–15. DOI

Asrul, L., Rahim, I., Kuswinanti, T., Rasyid, B., & Nasruddin, A. (2018). Effect of cocoa pod husk compost produced using rot fungi on the growth of cocoa seedlings. OnLine Journal of Biological Sciences, 18(1), 69-73. DOI

Belal, E. E., El Sowfy, D. M., & Rady, M. M. (2019). Integrative soil application of humic acid and sulfur improves saline calcareous soil properties and barley plant performance. Communications in Soil Science and Plant Analysis, 50(15), 1919–1930. DOI

Cristina, G., Camelin, E., Ottone, C., Fraterrigo Garofalo, S., Jorquera, L., Castro, M., … Tommasi, T. (2020). Recovery of humic acids from anaerobic sewage sludge: Extraction, characterization and encapsulation in alginate beads. International Journal of Biological Macromolecules, 164, 277–285. DOI

Dahniarti, N., Destiarti, L., & Idiawati, N. (2016). Validasi metode penentuan kadar asam humat dengan penambahan NaHCO3 menggunakan spektrofotometer ultra-violet. Jurnal Kimia Khatulistiwa, 5(2), 60–68. Retrieved from website

Das, A., Bhattacharya, S., Panchanan, G., Navya, B. S., & Nambiar, P. (2016). Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. Journal of Genetic Engineering and Biotechnology, 14(2), 281–288. DOI

Desoky, E.-S. M., Merwad, A.-R. M., & Rady, M. M. (2018). Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Communications in Soil Science and Plant Analysis, 49(8), 967–983. DOI

Fadzilah, K., Saini, H. S., & Atong, M. (2015). Identification of microbial population during oil palm frond (OPF) composting using light and scanning electron microscopy. Journal Agrobiotech, 2015, 33-50. Retrieved from website

Ferrara, G., & Brunetti, G. (2010). Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Spanish Journal of Agricultural Research, 8(3), 817-822. DOI

Fisher, R. F., & Binkley, D. (2000). Ecology and management of forest soils (3rd ed.). New York: John Wiley & Sons. Retrieved from website

Forotaghe, Z. A., Souri, M. K., Jahromi, M. G., & Torkashvand, A. M. (2022). Influence of humic acid application on onion growth characteristics under water deficit conditions. Journal of Plant Nutrition, 45(7), 1030–1040. DOI

He, X.-T., Traina, S. J., & Logan, T. J. (1992). Chemical properties of municipal solid waste composts. Journal of Environmental Quality, 21(3), 318–329. DOI

Heil, C. A. (2005). Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Harmful Algae, 4(3), 603–618. DOI

Inbar, Y., Chen, Y., & Hadar, Y. (1990). Humic substances formed during the composting of organic matter. Soil Science Society of America Journal, 54(5), 1316–1323. DOI

Jan, J. A., Nabi, G., Khan, M., Ahmad, S., Shah, P. S., Hussain, S., & Sehrish. (2020). Foliar application of humic acid improves growth and yield of chilli (Capsicum annum L.) varieties. Pakistan Journal of Agricultural Research, 33(3), 422-691. DOI

Koga, D., Kusumi, S., Shodo, R., Dan, Y., & Ushiki, T. (2015). High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy, 64(6), 387–394. DOI

Li, Y., Fang, F., Wei, J., Cui, R., Li, G., Zheng, F., & Tan, D. (2021). Physiological effects of humic acid in peanut growing in continuous cropping soil. Agronomy Journal, 113(1), 550–559. DOI

Mayhew, L. (2004). Humic substances in biological agriculture. Acres, 34(1&2), 1-8. Retrieved from PDF

Moskal-del Hoyo, M., Wachowiak, M., & Blanchette, R. A. (2010). Preservation of fungi in archaeological charcoal. Journal of Archaeological Science, 37(9), 2106–2116. DOI

Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34(11), 1527–1536. DOI

Osman, A. S., & Rady, M. M. (2012). Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. The Journal of Horticultural Science & Biotechnology, 87(6), :626–632. DOI

Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. Retrieved from PDF

Rahim, I., Maharani, Harsani, & Suherman. (2021). Tekstur tanah dan respons tanaman tanaman tomat pada lahan masam diaplikasi asam humat dari sari kulit buah kakao. Jurnal Galung Tropika, 10(3), 323–329. DOI

Rao, S. N. S. (2010). Mikroorganisme tanah dan pertumbuhan tanaman (H. Susilo, Trans.). Jakarta: UI Press. Retrieved from website

Sancez, P. A. (1993). Sifat dan pengelolaan tanah tropika. Bandung: ITB Press. Retrieved from website

Sangeetha, M. (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. Paper presented at 18th World Congress of Soil Science July 9-15, 2006 - Philadelphia, Pennsylvania, USA (part 2606a). International Union of Soil Sciences. Retrieved from website

Sarno, & Fitria, E. (2012). Pengaruh aplikasi asam humat dan pupuk n terhadap pertumbuhan dan serapan N pada tanaman bayam (Amaranthus spp). Paper presented at Prosiding Seminar Nasional Sains, Matematika, Informatika dan Aplikasinya (SNSMAIP) III-2012 (pp. 288–292). Lampung: Fakultas MIPA UNILA. Retrieved from website

Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. Heidelberg: Springer Berlin. DOI

Sounthararajah, D. P., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2015). Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. International Journal of Environmental Research and Public Health, 12(9), 10475–10489. DOI

Suntari, R., Retnowati, R., Soemarno, & Munir, M. (2015). Determination of urea-humic acid dosage of vertisols on the growth and production of rice. AGRIVITA Journal of Agricultural Science, 37(2), 185–192. DOI

Tan, K. H. (1991). Dasar-dasar kimia tanah. (B. Radjagukguk, Ed.; D. H. Goenadi, Trans.). Yogyakarta: Gadjah Mada Universitay Press. Retrieved from website

ul Hussan, M., Saleem, M. F., Hafeez, M. B., Khan, S., Hussain, S., Ahmad, N., … Nadeem, M. (2022). Impact of soil applied humic acid, zinc and boron supplementation on the growth, yield and zinc translocation in wheat. Asian Journal of Agriculture and Biology, 2022(1), 1-8. DOI

Zamani, A., Karimi, M., Abbasi-surki, A., & Direkvand-moghadam, F. (2021). The effect of humic acid application on Stevia (Stevia rebaudiana) growth and metabolites under drought stress. Iranian Journal of Plant Physiology, 11(3), 3651-3658. DOI




DOI: http://doi.org/10.17503/agrivita.v44i3.3854

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.