Characterization and Potential of Plant Growth-Promoting Rhizobacteria (PGPR) Isolates Capacity Correlating with Their Hydrocarbon Biodegradation Capability
Abstract
The aim of this research is to find the characteristics of three PGPR isolates—Azospirillum sp., Bacillus sp., and Pseudomonas sp.: First, by profiling their characteristics in a liquid bioremediation system and secondly by measuring their performance as a bioagent in a soil phytoremediation system using ramie plant (Boehmia niviea L.). A Randomized Block Design in triplicate is used: (1) a Nitrogenfree medium with mineral media containing 1% (wt/v) petroleum hydrocarbons; and (2) 1% (wt/v) glucose medium as control. We tested their petroleum-degrading capacity, nitrogenase activity, phytohormones production, and ramie plant growth. The results showed that both Pseudomonas sp. (98.7%, 81.78% degradation efficiency) and Azospirillum sp. (93.80%, 83.70%) were the superior candidate in both systems. They both show reduced but adequate phytohormone production, managing to improve ramie plant growth. Both also showed reduced but sufficient nitrogen fixing capabilities to improve hydrocarbon degradation activity effectively. Meanwhile, Bacillus sp. has the lowest biodegradation capabilities (84.07%; 78.6%) and lowest nitrogenase activity, while failing to improve plant growth. Therefore Bacillus sp. would be more beneficial in a bacterial consortium where its characteristics (high IAA production) can be coupled with other isolates that can offset its lack of phytohormone or nitrogenase activity.
Keywords
Full Text:
PDFReferences
Abbasian, F., Lockington, R., Mallavarapu, M., & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology, 176, 670–699. DOI
Al-Dhabaan, F. A. (2019). Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6), 1247–1252. DOI
Al-Mailem, D. M., Kansour, M. K., & Radwan, S. S. (2019). Cross-bioaugmentation among four remote soil samples contaminated with oil exerted just inconsistent effects on oil-bioremediation. Frontiers in Microbiology, 10, 1–11. DOI
Alotaibi, F., St-Arnaud, M., & Hijri, M. (2022). In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates. Frontiers in Microbiology, 2022, 863702. DOI
Babalola, O. O., & Akindolire, A. M. (2011). Identification of native rhizobacteria peculiar to selected food crops in Mmabatho municipality of South Africa. Biological Agriculture and Horticulture, 27(3–4), 294–309. DOI
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., … Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 871, 1–17. DOI
Bahat-Samet, E., Castro-Sowinski, S., & Okon, Y. (2004). Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiology Letters, 237(2), 195–203. DOI
Bakaeva, M., Kuzina, E., Vysotskaya, L., Kudoyarova, G., Arkhipova, T., Rafikova, G., … Loginov, O. (2020). Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants. Plants, 9(3), 379. DOI
Baldera-Moreno, Y., Pino, V., Farres, A., Banerjee, A., Gordillo, F., & Andler, R. (2022). Biotechnological aspects and mathematical modeling of the biodegradation of plastics under controlled conditions. Polymers, 14(3), 375. DOI
Bano, A., Shahzad, A., & Siddiqui, S. (2015). Rhizodegradation of hydrocarbon from oily sludge. Journal of Bioremediation & Biodegradation, 6, 289. DOI
Bashan, Y., Puente, M. E., de-Bashan, L. E., & Hernandez, J.-P. (2008). Environmental uses of plant growth-promoting bacteria. In E. A. Barka, & C. Clément (Eds.), Plant-Microbe Interactions (pp. 69–93). Retrieved from PDF
Beškoski, V. P., Gojgić-Cvijović, G., Milić, J., Ilić, M., Miletić, S., Šolević, T., & Vrvić, M. M. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) - A field experiment. Chemosphere, 83(1), 34–40. DOI
Bhatt, P. V., & Vyas, B. R. M. (2014). Screening and characterization of plant growth and health promoting rhizobacteria. International Journal of Current Microbiology and Applied Sciences, 3(6), 139–155. Retrieved from PDF
Bible, A. N., Khalsa-Moyers, G. K., Mukherjee, T., Green, C. S., Mishra, P., Purcell, A., … Alexandre, G. (2015). Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation. Applied and Environmental Microbiology, 81(24), 8346–8357. DOI
BPS. (2020). Statistik pertambangan non minyak dan gas bumi 2014 – 2019. Jakarta, ID: Badan Pusat Statistik. Retrieved from website
Burdman, S., Okon, Y., & Jurkevitch, E. (2000). Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Critical Reviews in Microbiology, 26(2), 91–110. DOI
Cruz-Hernández, M. A., Mendoza-Herrera, A., Bocanegra-García, V., & Rivera, G. (2022). Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. Microorganisms, 10(5), 1057. DOI
Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810. DOI
de-Bashan, L. E., Hernandez, J.-P., & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation - A comprehensive evaluation. Applied Soil Ecology, 61, 171–189. DOI
Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 1–14. DOI
Essien, J., Udoukpo, F., Etesin, U., & Etuk, H. (2013). Activities of hydrocarbon-utilizing and diazotrophic bacteria in crude oil impacted mangrove sediments of the Qua Iboe Estuary, Nigeria. Geosystem Engineering, 16(2), 165–174. DOI
Gkorezis, P., Daghio, M., Franzetti, A., Van Hamme, J. D., Sillen, W., & Vangronsveld, J. (2016). The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in Microbiology, 7, 1–27. DOI
Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5), 383–393. DOI
Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1-15. DOI
Gohil, R. B., Raval, V. H., Panchal, R. R., & Rajput, K. N. (2022). Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea. Frontiers in Agronomy, 2022, 805454. DOI
Hansda, A., Kumar, V., Anshumali, & Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134. Retrieved from website
Herridge, D. F., & Peoples, M. B. (1990). Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiology, 93(2), 495-503. DOI
Hontzeas, N., Zoidakis, J., Glick, B. R., & Abu-Omar, M. M. (2004). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: A key enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta - Proteins and Proteomics, 1703(1), 11–19. DOI
Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution, 130(3), 465–476. DOI
Iqbal, A., Arshad, M., Karthikeyan, R., Gentry, T. J., Rashid, J., Ahmed, I., & Schwab, A. P. (2019). Diesel degrading bacterial endophytes with plant growth promoting potential isolated from a petroleum storage facility. 3 Biotech, 9(1), 1–12. DOI
Keputusan Menteri. (2003). Nomor 128 Tahun 2003 Tentang tata cara dan persyaratan teknis pengolahan limbah minyak bumi dan tanah terkontaminasi oleh minyak bumi secara biologis. Retrieved from PDF
Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317–1332. DOI
Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 6, 155. DOI
Lerner, A., Castro-Sowinski, S., Valverde, A., Lerner, H., Dror, R., Okon, Y., & Burdman, S. (2009). The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology, 155(12), 4058–4068. DOI
Liu, W., Sun, J., Ding, L., Luo, Y., Chen, M., & Tang, C. (2013). Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant and Soil, 371(1–2), 533–542. DOI
Muratova, A. Y., Turkovskaya, O. V., Antonyuk, L. P., Makarov, O. E., Pozdnyakova, L. I., & Ignatov, V. V. (2005). Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology, 74, 210–215. DOI
Patel, T., & Saraf, M. (2017). Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions, 12(1), 480-487. DOI
Ponmurugan, P., & Gopi, C. (2006). In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology, 5(4), 348–350. Retrieved from website
Saeki, H., Sasaki, M., Komatsu, K., Miura, A., & Matsuda, H. (2009). Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresource Technology, 100(2), 572-577. DOI
Salleh, A. B., Ghazali, F. M., Abd Rahman, R. N. Z., & Basri, M. (2003). Bioremediation of petroleum hydrocarbon pollution. Indian Journal of Biotechnology, 2, 411-425. Retrieved from website
Sayyed, R. Z., & Patel, P. R. (2011). Soil microorganisms and environmental health. International Journal of Biosciences and Biotechnology, 1(1), 41–66. Retrieved from website
Sinha, S., & Mukherjee, S. K. (2008). Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology, 56(1), 55–60. DOI
Vanbleu, E., Choudhury, B. P., Carlson, R. W., & Vanderleyden, J. (2005). The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environmental Microbiology, 7(11), 1769–1774. DOI
Varjani, S. J., & Upasani, V. N. (2016). Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresource Technology, 221, 510-516. DOI
Viñas, M., Sabaté, J., Espuny, M. J., & Solanas, A. M. (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and Environmental Microbiology, 71(11), 7008–7018. DOI
Whyte, L. G., Hawari, J., Zhou, E., Bourbonnière, L., Inniss, W. E., & Greer, C. W. (1998). Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64(7), 2578-2584. DOI
Wilkes, H., Buckel, W., Golding, B. T., & Rabus, R. (2016). Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. Journal of Molecular Microbiology and Biotechnology, 26(1-3), 138-151. DOI
Yateem, A., Al-Sharrah, T., & Bin-Haji, A. (2007). Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil and Sediment Contamination, 16(3), 269–280. DOI
Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56(3), 263–284. DOI
Zhang, X., Xu, D., Yang, G., Zhang, H., Li, J., & Shim, H. (2012). Isolation and characterization of rhamnolipid producing Pseudomonas aeruginosa strains from waste edible oils. African Journal of Microbiology Research, 6(7), 1466–1471. DOI
Zhao, D., Liu, C., Liu, L., Zhang, Y., Liu, Q., & Wu, W.-M. (2011). Selection of functional consortium for crude oil-contaminated soil remediation. International Biodeterioration and Biodegradation, 65(8), 1244–1248. DOI
Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33(3), 406–413. DOI
DOI: http://doi.org/10.17503/agrivita.v41i0.3773
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.