Resistance Level and Enzyme Activity of Spodoptera litura F. to Chlorpyrifos and Their Sensitivity to the Oil Formulation of Azadirachta indica Juss. and Cymbopogon nardus (L.) Rendl.
Abstract
Keywords
Full Text:
PDFReferences
Abbas, N., Samiullah, Shad, S. A., Razaq, M., Waheed, A., & Aslam, M. (2014). Resistance of Spodoptera litura (Lepidoptera: Noctuidae) to profenofos: Relative fitness and cross resistance. Crop Protection, 58, 49–54. DOI
Ahmad, M., Denholm, I., & Bromilow, R. H. (2006). Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Management Science, 62(9), 805–810. DOI
Ahmad, M., Farid, A., & Saeed, M. (2018). Resistance to new insecticides and their synergism in Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 107, 79–86. DOI
Ajayi, O. E., Oladipupo, S. O., & Ojo, T. B. (2018). The fumigant toxicity of Syzygium aromaticum and Cymbopogon citratus oils on selected life stages of Tribolium castaneum (Coleoptera: Tenebrionidae). Jordan Journal of Biological Sciences, 11(5), 571-575. Retrieved from PDF
Baek, J. H., Kim, J. I., Lee, D.-W., Chung, B. K., Miyata, T., & Lee, S. H. (2005). Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology, 81(3), 164-175. DOI
Bezzar-Bendjazia, R., Kilani-Morakchi, S., & Aribi, N. (2016). Growth and molting disruption effects of azadirachtin against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Entomology and Zoology Studies, 4(1), 363-368. Retrieved from PDF
Boaventura, D., Martin, M., Pozzebon, A., Mota-Sanchez, D., & Nauen, R. (2020). Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects, 11(8), 545. DOI
BPS. (2016). Produksi hortikultura sayuran dan buah semusim Jawa Barat 2015. Badan Pusat Statistik Provinsi Jawa Barat. Retrieved from website
Burden, D. W. (2012). Guide to the disruption of biological samples - 2012. Random Primers, 12, 1-25. Retrieved from website
Charpentier, A., & Fournier, D. (2001). Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology, 70(2), 100-107. DOI
Che, W., Huang, J., Guan, F., Wu, Y., & Yang, Y. (2015). Cross-resistance and Inheritance of Resistance to Emamectin Benzoate in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology, 108(4), 2015–2020, DOI
Che, W., Shi, T., Wu, Y., & Yang, Y. (2013). Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 106(4), 1855–1862, DOI
Darvishzadeh, A., & Sharifian, I. (2015). Effect of spinosad and malathion on esterase enzyme activities of Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Entomology and Zoology Studies, 3(2), 351–354. Retrieved from website
Dawkar, V. V., Barage, S. H., Barbole, R. S., Fatangare, A., Grimalt, S., Haldar, S., … Giri, A. P. (2019). Azadirachtin-A from Azadirachta indica impacts multiple biological targets in cotton bollworm Helicoverpa armigera. ACS Omega, 4(5), 9531–9541. DOI
de Oliveira, J. L. (2021). Nano-biopesticides: Present concepts and future perspectives in integrated pest management. In S. Jogaiah, H. B. Singh, L. F. Fraceto, & R. de Lima (Eds.), Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement (pp. 1-27). Woodhead Publishing. DOI
Dono, D., Ismayana, S., Idar, Prijono, D., & Muslikha, I. (2010). Status dan mekanisme resistensi biokimia Crocidolomia pavonana (F.) (Lepidoptera: Crambidae) terhadap insektisida organofosfat serta kepekaannya terhadap insektisida botani ekstrak biji Barringtonia asiatica. Jurnal Entomologi Indonesia, 7(1), 9–27. DOI
Dono, D., Natawigena, W. D., & Kharismansyah, H. R. (2014). Resistance status of Crocidolomia pavonana F. (Lepidoptera: Crambidae) from Pasirwangi Garut, West Java to the insecticide profenofos and its susceptibility to the methanolic leaf extract of Nicotiana tabacum L. (Solanaceae). Journal of the International Society for Southeast Asian Agricultural Sciences, 20(2), 121-130. Retrieved from website
Ellman, G. L., Courtney, K. D., Andres Jr., V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-90. DOI
Enayati, A. A., Ranson, H., & Hemingway, J. (2005). Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 14(1), 3–8. DOI
Gong, Y.-J., Wang, Z.-H., Shi, B.-C., Kang, Z.-J., Zhu, L., Jin, G.-H., & Wei, S.-J. (2013). Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. Journal of Insect Science, 13(1), 135. DOI
Govindachari, T. R., Suresh, G., Gopalakrishnan, G., & Wesley, S. D. (2000). Insect antifeedant and growth regulating activities of neem seed oil – the role of major tetranortriterpenoids. Journal of Applied Entomology, 124(7-8), 287-291. DOI
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutation s-transferase: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139. DOI
Hernández-Lambraño, R., Caballero-Gallardo, K., & Olivero-Verbel, J. (2014). Toxicity and antifeedant activity of essential oils from three aromatic plants grown in Colombia against Euprosterna elaeasa and Acharia fusca (Lepidoptera: Limacodidae). Asian Pacific Journal of Tropical Biomedicine, 4(9), 695-700. DOI
Hu, B., Hu, S., Huang, H., Wei, Q., Ren, M., Huang, S., … Su, J. (2019). Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology, 155, 58-71. DOI
IRAC. (2022). Mode of action classification scheme [Version 10.3]. Insecticide Resistance Action Committee. Retrieved from website
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66. DOI
Karuppaiah, V., Srivastava, C., & Subramanian, S. (2017). Variation in insecticide detoxification enzymes activity in Spodoptera litura (Fabricius) of different geographic origin. Journal of Entomology and Zoology Studies, 5(3), 770–773. Retrieved from website
Kiran, G. B., Patil, R. H., & Srujana, Y. (2016). Field resistance of Spodoptera litura (Fab.) to conventional insecticides in India. Crop Protection, 88, 103-108. DOI
Koul, O. (1996). Mode of action of azadirachtin in insect. In N. S. Randhawa & B. S. Parmar (Eds.), Neem (pp. 160-170). New Delhi: New Age International Limited Publishers.
Kresze, G. B. (1983). Methods for protein determination. In H. U. Bergmeyer, J. Bergmeyer, & M. Grassl (Eds.), Methods of Protein Enzymatic Analysis (3rd ed., vol. II, pp. 84-99). Weinheim: Verlag Chemie. Retrieved from website
Laoh, J. H., Puspita, F., & Hendra. (2003). Susceptibility of Spodoptera litura F. larvae to nuclear polyhedrosis virus. Jurnal Natur Indonesia, 5(2), 145–151. Retrieved from website
Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253. DOI
Lilly, D. G., Latham, S. L., Webb, C. E., & Doggett, S. L. (2016) Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLoS ONE, 11(4), e0153302. DOI
Lowery, D. T., & Smirle, M. J. (2000). Toxicity of insecticides to obliquebanded leafroller, Choristoneura rosaceana, larvae and adults exposed previously to neem seed oil. Entomologia Experimentalis et Applicata, 95(2), 201–207. DOI
Malik, A. Q., Syed, T. S., Sahito, H. A., Abbasi, N. A., Jalbani, N. A., Mastoi S. M., … Jatoi, F. A. (2017). Effect of sub-lethal concentration of Azadirachta indica on biology and weight of Spodoptera litura on cauliflower under laboratory conditions. Journal of Entomology and Zoology Studies, 5(3), 1091-1095. Retrieved from PDF
Mordue (Luntz), A. J., & Blackwell, A. (1993). Azadirachtin: an update. Journal of Insect Physiology, 39(11), 903-924. DOI
Mordue (Luntz), A. J., & Nisbet, A. J. (2000). Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil, 29(4), 615–632. DOI
Mota-Sanchez, D., & Wise, J. C. (2022). The arthropod pesticide resistance database. Michigan State University. Retrieved from website
Mulyaningsih, B., Umniyati, S. R., & Hadianto, T. (2017). Detection of nonspecific esterase activity in organophosphate resistant strain of Aedes albopictus skuse (Diptera: Culicidae) larvae in Yogyakarta, Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health, 48(3), 552–560. Retrieved from PDF
Muthusamy, R., Vishnupriya, M., & Shivakumar, M. S. (2014). Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 17(4), 865-869. DOI
Nannan, L., Fang, Z., Qiang, X., Pridgeon, J. W., & Xiwu, G. (2006). Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance. Acta Entomologica Sinica, 49(4), 671-679. Retrieved from website
NPIC. (2022). Chlorpyrifos. National Pesticide Information Center. Retrieved from website
Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97-102. DOI
Pinheiro, P. F., de Queiroz, V. T., Rondelli, V. M., Costa, A. V., de Paula Marcelino, T., & Pratissoli, D. (2013). Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Agricultural Sciences, 37(2), 138-144. DOI
Razak, T. A., Santhakumar, T., Mageswari, K., & Santhi, S. (2014). Studies on efficacy of certain neem products against Spodoptera litura (Fab.). Journal of Biopesticides, 7, 160–163. Retrieved from PDF
Saleem, M., Hussain, D., Ghouse, G., Abbas, M., & Fisher, S. W. (2016). Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection, 79, 177-184. DOI
Samsudin. (2011). Biosintesa dan cara kerja azadirachtin sebagai bahan aktif insektisida nabati. Paper presented at Semnas Pesnab IV, Jakarta 15 Oktober 2011 (pp. 61–70). Retrieved from website
Setiawati, W., Murtiningsih, R., & Hasyim, A. (2011). Laboratory and field evaluation of essential oils from Cymbopogon nardus as oviposition deterrent and ovicidal activities against Helicoverpa armigera Hubner on chili pepper. Indonesian Journal of Agricultural Science, 12(1), 9–16. DOI
Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.. Biochemical Journal, 360(1), 1–16. DOI
Shen, J., Li. Z., Li, D., Wang, R., Zhang, S., You, H., & Li, J. (2020). Biochemical mechanisms, cross-resistance and stability of resistance to metaflumizone in Plutella xylostella. Insects, 11(5), 311. DOI
Soh, L.-S., & Singham, G. V. (2021). Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug, Cimex hemipterus. Pest Management Science, 77(11), 5202-5212. DOI
Tengkano, W., & Suharsono. (2005). Ulat grayak Spodoptera litura Fabricius (Lepidoptera: Noctuidae) pada tanaman kedelai dan pengendaliannya. Buletin Palawija, 10, 43–52. Retrieved from website
Tiwari, S., Stelinski, L. L., & Rogers, M. E. (2012). Biochemical basis of organophosphate and carbamate resistance in Asian citrus psyllid. Journal of Economic Entomology, 105(2), 540–548. DOI
Tong, H., Su, Q., Zhou, X., & Bai, L. (2013). Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. Journal of Pest Science, 86, 599–609. DOI
Wibisono, I., Trisyono, Y. A., Martono, E., & Purwantoro, A. (2007). Evaluasi resistensi terhadap metoksifenozida pada Spodoptera exigua di Jawa. Jurnal Perlindungan Tanaman Tropika, 13(2), 127-135. Retrieved from website
Winteringham, F. P. W. (1969). FAO international collaborative programme for the development of standardized tests for resistance of agricultural pests to pesticides. FAO Plant Protection Bulletin, 17(4), 73-75. Retrieved from website
Xu, Z.-B., Zou, X.-P., Zhang, N., Feng, Q.-L., & Zheng, S.-C. (2015). Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura. Insect Science, 22(4), 503–511. DOI
Xue, M., Pang, Y.-H., Li, Q.-L., & Liu, T.-X. (2010). Effects of four host plants on susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) larvae to five insecticides and activities of detoxification esterases. Pest Management Science, 66(12), 1273–1279. DOI
You, C., Shan, C., Xin, J., Li, J., Ma, Z., Zhang, Y., Zeng, X., & Gao, X. (2020). Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Scientific Reports, 10, 8400. DOI
Yu, S. J. (2006). Insensitivity of acetylcholinesterase in a field strain of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Resistant Pest Management Newsletter, 15(2), 45-47. Retrieved from website
Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1-11. DOI
Zabel, A., Stankovic, S., Kostic, M., Rahovic, D., Tomic, V., Kostic, I., & Alkhammas, I. O. (2017). Acetylcholinesterase [AChE] activity of colorado potato beetle populations in Serbia resistant to carbamates and organophosphates. Romanian Biotechnological Letters, 22(3), 12584-12596. Retrieved from PDF
DOI: http://doi.org/10.17503/agrivita.v41i0.3729
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.