Resistance Level and Enzyme Activity of Spodoptera litura F. to Chlorpyrifos and Their Sensitivity to the Oil Formulation of Azadirachta indica Juss. and Cymbopogon nardus (L.) Rendl.

R. Arif Malik Ramadhan, Neneng Sri Widayani, Danar Dono, Yusup Hidayat, Safri Ishmayana


This study aimed to obtain resistance information of S. litura from Karangpawitan and Lembang districts (West Java, Indonesia) against chlorpyrifos insecticides (200 g/l) and their sensitivity to oil mixture of A. indica and C. nardus (1:1) using feeding and topical assay. The activity of acetylcholinesterase, esterase, and glutathione s-transferase from S. litura larvae in both populations were tested to determine their role in insect resistance. Results showed that S. litura population from Lembang had a higher level of resistance to chlorpyrifos compared to Karangpawitan. The sensitivity of the two S. litura populations had a relatively similar resistance ratio (RR) value of less than 1 to botanical insecticide. These indicated that resistant population could be controlled by a mixture of this botanicals insecticide. Enzyme activity test indicated that chlorpyrifos at a concentration of 0.26% could inhibit the acetylcholinesterase activity of insect population from Karangpawitan by 98.66% while those from Lembang, it was only 35.31%. Specific activity of esterase from Karangpawitan was 13.37 units/mg while Lembang population was 119.65 units/mg. The specific activity of the Glutathione S-Transferase (GST) of Karangpawitan population was 1140.82 units/mg while Lembang population was 793.73 units/mg. The high activity of the three enzymes could be responsible for resistance of S. litura larvae to chlorpyrifos.


Acetylcholinesterase; Armyworm; Botanical insecticide; Esterase; Glutathione s-transferase

Full Text:



Abbas, N., Samiullah, Shad, S. A., Razaq, M., Waheed, A., & Aslam, M. (2014). Resistance of Spodoptera litura (Lepidoptera: Noctuidae) to profenofos: Relative fitness and cross resistance. Crop Protection, 58, 49–54. DOI

Ahmad, M., Denholm, I., & Bromilow, R. H. (2006). Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Management Science, 62(9), 805–810. DOI

Ahmad, M., Farid, A., & Saeed, M. (2018). Resistance to new insecticides and their synergism in Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 107, 79–86. DOI

Ajayi, O. E., Oladipupo, S. O., & Ojo, T. B. (2018). The fumigant toxicity of Syzygium aromaticum and Cymbopogon citratus oils on selected life stages of Tribolium castaneum (Coleoptera: Tenebrionidae). Jordan Journal of Biological Sciences, 11(5), 571-575. Retrieved from PDF

Baek, J. H., Kim, J. I., Lee, D.-W., Chung, B. K., Miyata, T., & Lee, S. H. (2005). Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology, 81(3), 164-175. DOI

Bezzar-Bendjazia, R., Kilani-Morakchi, S., & Aribi, N. (2016). Growth and molting disruption effects of azadirachtin against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Entomology and Zoology Studies, 4(1), 363-368. Retrieved from PDF

Boaventura, D., Martin, M., Pozzebon, A., Mota-Sanchez, D., & Nauen, R. (2020). Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects, 11(8), 545. DOI

BPS. (2016). Produksi hortikultura sayuran dan buah semusim Jawa Barat 2015. Badan Pusat Statistik Provinsi Jawa Barat. Retrieved from website

Burden, D. W. (2012). Guide to the disruption of biological samples - 2012. Random Primers, 12, 1-25. Retrieved from website

Charpentier, A., & Fournier, D. (2001). Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology, 70(2), 100-107. DOI

Che, W., Huang, J., Guan, F., Wu, Y., & Yang, Y. (2015). Cross-resistance and Inheritance of Resistance to Emamectin Benzoate in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology, 108(4), 2015–2020, DOI

Che, W., Shi, T., Wu, Y., & Yang, Y. (2013). Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 106(4), 1855–1862, DOI

Darvishzadeh, A., & Sharifian, I. (2015). Effect of spinosad and malathion on esterase enzyme activities of Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Entomology and Zoology Studies, 3(2), 351–354. Retrieved from website

Dawkar, V. V., Barage, S. H., Barbole, R. S., Fatangare, A., Grimalt, S., Haldar, S., … Giri, A. P. (2019). Azadirachtin-A from Azadirachta indica impacts multiple biological targets in cotton bollworm Helicoverpa armigera. ACS Omega, 4(5), 9531–9541. DOI

de Oliveira, J. L. (2021). Nano-biopesticides: Present concepts and future perspectives in integrated pest management. In S. Jogaiah, H. B. Singh, L. F. Fraceto, & R. de Lima (Eds.), Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement (pp. 1-27). Woodhead Publishing. DOI

Dono, D., Ismayana, S., Idar, Prijono, D., & Muslikha, I. (2010). Status dan mekanisme resistensi biokimia Crocidolomia pavonana (F.) (Lepidoptera: Crambidae) terhadap insektisida organofosfat serta kepekaannya terhadap insektisida botani ekstrak biji Barringtonia asiatica. Jurnal Entomologi Indonesia, 7(1), 9–27. DOI

Dono, D., Natawigena, W. D., & Kharismansyah, H. R. (2014). Resistance status of Crocidolomia pavonana F. (Lepidoptera: Crambidae) from Pasirwangi Garut, West Java to the insecticide profenofos and its susceptibility to the methanolic leaf extract of Nicotiana tabacum L. (Solanaceae). Journal of the International Society for Southeast Asian Agricultural Sciences, 20(2), 121-130. Retrieved from website

Ellman, G. L., Courtney, K. D., Andres Jr., V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-90. DOI

Enayati, A. A., Ranson, H., & Hemingway, J. (2005). Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 14(1), 3–8. DOI

Gong, Y.-J., Wang, Z.-H., Shi, B.-C., Kang, Z.-J., Zhu, L., Jin, G.-H., & Wei, S.-J. (2013). Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. Journal of Insect Science, 13(1), 135. DOI

Govindachari, T. R., Suresh, G., Gopalakrishnan, G., & Wesley, S. D. (2000). Insect antifeedant and growth regulating activities of neem seed oil – the role of major tetranortriterpenoids. Journal of Applied Entomology, 124(7-8), 287-291. DOI

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutation s-transferase: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139. DOI

Hernández-Lambraño, R., Caballero-Gallardo, K., & Olivero-Verbel, J. (2014). Toxicity and antifeedant activity of essential oils from three aromatic plants grown in Colombia against Euprosterna elaeasa and Acharia fusca (Lepidoptera: Limacodidae). Asian Pacific Journal of Tropical Biomedicine, 4(9), 695-700. DOI

Hu, B., Hu, S., Huang, H., Wei, Q., Ren, M., Huang, S., … Su, J. (2019). Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology, 155, 58-71. DOI

IRAC. (2022). Mode of action classification scheme [Version 10.3]. Insecticide Resistance Action Committee. Retrieved from website

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66. DOI

Karuppaiah, V., Srivastava, C., & Subramanian, S. (2017). Variation in insecticide detoxification enzymes activity in Spodoptera litura (Fabricius) of different geographic origin. Journal of Entomology and Zoology Studies, 5(3), 770–773. Retrieved from website

Kiran, G. B., Patil, R. H., & Srujana, Y. (2016). Field resistance of Spodoptera litura (Fab.) to conventional insecticides in India. Crop Protection, 88, 103-108. DOI

Koul, O. (1996). Mode of action of azadirachtin in insect. In N. S. Randhawa & B. S. Parmar (Eds.), Neem (pp. 160-170). New Delhi: New Age International Limited Publishers.

Kresze, G. B. (1983). Methods for protein determination. In H. U. Bergmeyer, J. Bergmeyer, & M. Grassl (Eds.), Methods of Protein Enzymatic Analysis (3rd ed., vol. II, pp. 84-99). Weinheim: Verlag Chemie. Retrieved from website

Laoh, J. H., Puspita, F., & Hendra. (2003). Susceptibility of Spodoptera litura F. larvae to nuclear polyhedrosis virus. Jurnal Natur Indonesia, 5(2), 145–151. Retrieved from website

Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253. DOI

Lilly, D. G., Latham, S. L., Webb, C. E., & Doggett, S. L. (2016) Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLoS ONE, 11(4), e0153302. DOI

Lowery, D. T., & Smirle, M. J. (2000). Toxicity of insecticides to obliquebanded leafroller, Choristoneura rosaceana, larvae and adults exposed previously to neem seed oil. Entomologia Experimentalis et Applicata, 95(2), 201–207. DOI

Malik, A. Q., Syed, T. S., Sahito, H. A., Abbasi, N. A., Jalbani, N. A., Mastoi S. M., … Jatoi, F. A. (2017). Effect of sub-lethal concentration of Azadirachta indica on biology and weight of Spodoptera litura on cauliflower under laboratory conditions. Journal of Entomology and Zoology Studies, 5(3), 1091-1095. Retrieved from PDF

Mordue (Luntz), A. J., & Blackwell, A. (1993). Azadirachtin: an update. Journal of Insect Physiology, 39(11), 903-924. DOI

Mordue (Luntz), A. J., & Nisbet, A. J. (2000). Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil, 29(4), 615–632. DOI

Mota-Sanchez, D., & Wise, J. C. (2022). The arthropod pesticide resistance database. Michigan State University. Retrieved from website

Mulyaningsih, B., Umniyati, S. R., & Hadianto, T. (2017). Detection of nonspecific esterase activity in organophosphate resistant strain of Aedes albopictus skuse (Diptera: Culicidae) larvae in Yogyakarta, Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health, 48(3), 552–560. Retrieved from PDF

Muthusamy, R., Vishnupriya, M., & Shivakumar, M. S. (2014). Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 17(4), 865-869. DOI

Nannan, L., Fang, Z., Qiang, X., Pridgeon, J. W., & Xiwu, G. (2006). Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance. Acta Entomologica Sinica, 49(4), 671-679. Retrieved from website

NPIC. (2022). Chlorpyrifos. National Pesticide Information Center. Retrieved from website

Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97-102. DOI

Pinheiro, P. F., de Queiroz, V. T., Rondelli, V. M., Costa, A. V., de Paula Marcelino, T., & Pratissoli, D. (2013). Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Agricultural Sciences, 37(2), 138-144. DOI

Razak, T. A., Santhakumar, T., Mageswari, K., & Santhi, S. (2014). Studies on efficacy of certain neem products against Spodoptera litura (Fab.). Journal of Biopesticides, 7, 160–163. Retrieved from PDF

Saleem, M., Hussain, D., Ghouse, G., Abbas, M., & Fisher, S. W. (2016). Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection, 79, 177-184. DOI

Samsudin. (2011). Biosintesa dan cara kerja azadirachtin sebagai bahan aktif insektisida nabati. Paper presented at Semnas Pesnab IV, Jakarta 15 Oktober 2011 (pp. 61–70). Retrieved from website

Setiawati, W., Murtiningsih, R., & Hasyim, A. (2011). Laboratory and field evaluation of essential oils from Cymbopogon nardus as oviposition deterrent and ovicidal activities against Helicoverpa armigera Hubner on chili pepper. Indonesian Journal of Agricultural Science, 12(1), 9–16. DOI

Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.. Biochemical Journal, 360(1), 1–16. DOI

Shen, J., Li. Z., Li, D., Wang, R., Zhang, S., You, H., & Li, J. (2020). Biochemical mechanisms, cross-resistance and stability of resistance to metaflumizone in Plutella xylostella. Insects, 11(5), 311. DOI

Soh, L.-S., & Singham, G. V. (2021). Cuticle thickening associated with fenitrothion and imidacloprid resistance and influence of voltage-gated sodium channel mutations on pyrethroid resistance in the tropical bed bug, Cimex hemipterus. Pest Management Science, 77(11), 5202-5212. DOI

Tengkano, W., & Suharsono. (2005). Ulat grayak Spodoptera litura Fabricius (Lepidoptera: Noctuidae) pada tanaman kedelai dan pengendaliannya. Buletin Palawija, 10, 43–52. Retrieved from website

Tiwari, S., Stelinski, L. L., & Rogers, M. E. (2012). Biochemical basis of organophosphate and carbamate resistance in Asian citrus psyllid. Journal of Economic Entomology, 105(2), 540–548. DOI

Tong, H., Su, Q., Zhou, X., & Bai, L. (2013). Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. Journal of Pest Science, 86, 599–609. DOI

Wibisono, I., Trisyono, Y. A., Martono, E., & Purwantoro, A. (2007). Evaluasi resistensi terhadap metoksifenozida pada Spodoptera exigua di Jawa. Jurnal Perlindungan Tanaman Tropika, 13(2), 127-135. Retrieved from website

Winteringham, F. P. W. (1969). FAO international collaborative programme for the development of standardized tests for resistance of agricultural pests to pesticides. FAO Plant Protection Bulletin, 17(4), 73-75. Retrieved from website

Xu, Z.-B., Zou, X.-P., Zhang, N., Feng, Q.-L., & Zheng, S.-C. (2015). Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura. Insect Science, 22(4), 503–511. DOI

Xue, M., Pang, Y.-H., Li, Q.-L., & Liu, T.-X. (2010). Effects of four host plants on susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) larvae to five insecticides and activities of detoxification esterases. Pest Management Science, 66(12), 1273–1279. DOI

You, C., Shan, C., Xin, J., Li, J., Ma, Z., Zhang, Y., Zeng, X., & Gao, X. (2020). Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Scientific Reports, 10, 8400. DOI

Yu, S. J. (2006). Insensitivity of acetylcholinesterase in a field strain of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Resistant Pest Management Newsletter, 15(2), 45-47. Retrieved from website

Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1-11. DOI

Zabel, A., Stankovic, S., Kostic, M., Rahovic, D., Tomic, V., Kostic, I., & Alkhammas, I. O. (2017). Acetylcholinesterase [AChE] activity of colorado potato beetle populations in Serbia resistant to carbamates and organophosphates. Romanian Biotechnological Letters, 22(3), 12584-12596. Retrieved from PDF


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.