Evaluation of Effervescent Tablet Formulation of Trichoderma harzianum Raw Secondary Metabolites Toward Fusarium Wilt on Pepper

Loekas Soesanto, Dede Herdiyana Ikbal, Endang Mugiastuti, Murti Wisnu Ragil Sastyawan, Tamad Tamad

Abstract


Fusarium oxysporum f.sp capsici, which causes chili-fusarium wilt disease, may be regulated by a secondary metabolite of Trichoderma harzainum. Effervescent tablets are used because liquid formulations have some drawbacks. The purpose of this study is to qualitatively determine T. harzianum’s best crude secondary metabolites, growth and yield, and phenolic compound content in chili crops in foamed tablet formulations against F. oxysporum in vitro. The in vitro study used 6 replicates, a completely randomized design, and 4 treatments consisted of controls and 4, 6, and 8 tablets. Under in vivo conditions, the experiment used a randomized block designs with 4 replicates, eight treatments consisting of controls, fungicides (benomyl), and four, six, or eight tablets per day before or after inoculation. The variables observed were antagonist testing, incubation time, disease intensity, disease incidence, AUDPC, germination rate, plant height, root fresh weight, and qualitative phenolic composition. The results of the study showed that the best dose of T. harzianum’s crude secondary metabolite in vitro was 4 tablets. Medications in in-plant studies delayed the incubation period by 64.11%, suppressed disease outbreaks by 58.34%, reduced disease intensity by 80.45%, increased plant height by 50.4%, and harvested phenols (saponins, tannins, hydroquinone). The content of the compound has been qualitatively increased.

Keywords


Chili; Effervescent Tablets; Fusarium Wilt; Raw Secondary Metabolites; Trichoderma harzianum

Full Text:

PDF

References


Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. DOI

Barari, H. (2016). Biocontrol of tomato Fusarium wilt by Trichoderma species under in vitro and in vivo conditions. Cercetâri Agronomice în Moldova, 49(1), 91-98. Retrieved from PDF

Bashir, M. R., Atiq, M., Sajid, M., Mohsan, M., Abbas, W., Alam, M. W., & Bashair, M. (2018). Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environmental Science and Pollution Research, 25(2), 6797–6801. DOI

Bisht, N. & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Book Series Intechopen. DOI

Carvalho, R. S., Carollo, C. A., de Magalhães, J. C., Palumbo, J. M. C., Boaretto, A. G., Nunes e Sá, I. C., … Ferreira, J. M. S. (2018). Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, 114, 181-187. DOI

Cuervo-Parra, J. A., Ramírez-Suero, M., Sánchez-López, V., & Ramírez-Lepe, M. (2011). Antagonistic effect of Trichoderma harzianum VSL291 on phytopathogenic fungi isolated from cocoa (Theobroma cacao L.) fruits. African Journal of Biotechnology, 10(52), 10657–10663. DOI

Damalas, C. A. & Koutroubas, S. D. (2016). Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics, 4(1), 1. DOI

de Oliveira Costa, B. & Nahas, E. (2012). Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil. Brazilian Journal of Microbiology, 43(1), 332–340. DOI

Fahrunnida, & Pratiwi, R. (2015). Kandungan saponin buah, daun dan tangkai daun belimbing wuluh (Averrhoa bilimbi L.). Paper presented at Proceeding of Seminar Nasional Konservasi dan Pemanfaatan Sumber Daya Alam Towards Conservation and Sustainable Use of Natural Resources: A Perspective of Education, Biology, Geography and Environmental Sciences (pp. 220-234), Surakarta, 13 Januari 2015. FKIP Universitas Sebelas Maret. Retrieved from website

Faizal, A. & Geelen, D. (2013). Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12, 877–893. DOI

Gagic, V., Holding, M., Venables, W. N., Hulthen, A. D., & Schellhorn, N. A. (2021). Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 118(12), e2018100118. DOI

Gairola, K. C., Nautiyal, A. R., & Dwivedi, A. K. (2011). Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Advances in Bioresearch, 2(2), 66-71. Retrieved from PDF

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 758. DOI

Hasyim, A., Setiawati, W., & Lukman, L. (2015). Inovasi teknologi pengendalian OPT ramah lingkungan pada cabai: Upaya alternatif menuju ekosistem harmonis. Pengembangan Inovasi Pertanian, 8(1), 1-10. Retrieved from website

Hudson, O., Waliullah, S., Ji, P., & Ali, Md E. (2021). Molecular characterization of laboratory mutants of Fusarium oxysporum f. sp. niveum resistant to prothioconazole, a demethylation inhibitor (DMI) fungicide. Journal of Fungi, 7(9), 704. DOI

Jeger, M. J. & Viljanen-Rollinsen, S. L. H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102(1), 32-40. DOI

Jeyanthi, V., Velusamy, P., Kumar, G. V., & Kiruba, K. (2021). Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Heliyon, 7(5), e07021. DOI

Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98, 533–544. DOI

Khan, R. A. A., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8(6), 817. DOI

Kharkwal, H., Panthari, P., Pant, M. K., Kharkwal, H., Kharkwal, A. C., & Joshi, D. D. (2012). Foaming glycosides: A review. IOSR Journal of Parmacy, 2(5), 23-28. DOI

Khatri, D. K., Tiwari, D. N., & Bariya, H. S. (2017). Chitinolytic efficacy and secretion of cell wall-degrading enzymes from Trichoderma spp. in response to phytopathological fungi. Journal of Applied Biology & Biotechnology, 5(6), 1-8. DOI

Kildisheva, O. A., Dixon, K. W., Silveira, F. A. O., Chapman, T., Di Sacco, A., Mondoni, A., … Cross, A. T. (2020). Dormancy and germination: making every seed count in restoration. Restoration Ecology, 28(3), 256–265. DOI

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10, 845. DOI

Lahlali, R., Ezrari, E., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., … Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. DOI

Leslie, J. F. & Summerell, B. A. (2006). The fusarium laboratory manual. Iowa: Blackwell Publishing. DOI

Loc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., & Ha, T. T. T. (2020). Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology, 11(1), 38–48. DOI

Ma, C., He, N., Zhao, Y., Xia, D., Wei, J., & Kang, W. (2019). Antimicrobial mechanism of hydroquinone. Applied Biochemistry and Biotechnology, 189, 1291–1303. DOI

Mulatu, A., Alemu, T., Megersa, N., & Vetukuri, R. R. (2021). Optimization of culture conditions and production of bio-fungicides from Trichoderma species under solid-state fermentation using mathematical modeling. Microorganisms, 9(8), 1675. DOI

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. DOI

Noronha, E. F. & Ulhoa, C.J. (1996). Purification and characterization of an endo-β-1,3-glucanase from Trichoderma harzianum. Canadian Journal of Microbiology, 42(10), 1039-1044. DOI

Paraschivu, M., Cotuna, O., & Paraschivu, M. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science, 45(1), 193-201. Retrieved from website

Parisi, M., Alioto, D., & Tripodi, P. (2020). Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences, 21(7), 2587. DOI

Passera, A., Compant, S., Casati, P., Maturo, M. G., Battelli, G., Quaglino, F., … Mitter, B. (2019). Not just a pathogen? Description of a plant-beneficial Pseudomonas syringae strain. Frontiers in Microbiology, 10, 1409. DOI

Patel, S. G., & Siddaiah, M. (2018). Formulation and evaluation of effervescent tablets: a review. Journal of Drug Delivery and Therapeutics, 8(6), 296-303. DOI

Perveen, K. & Bokhari, N. A. (2012). Antagonistic activity of Trichoderma harzianum and Trichoderma viride isolated from soil of date palm field against Fusarium oxysporum. African Journal of Microbiology Research, 6(13), 3348-3353. Retrieved from website

Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry Reviews, 9, 425–474. DOI

Puyam, A. (2016). Advent of Trichoderma as a bio-control agent- A review. Journal of Applied and Natural Science, 8(2), 1100-1109. DOI

Rahmania, N., Herpandi, & Rozirwan. (2018). Phytochemical test of mangrove Avicennia alba, Rhizophora apiculata and Sonneratia alba from Musi River Estuary, South Sumatera. BIOVALENTIA: Biological Research Journal, 4(2), 8-15. Retrieved from website

Reischke, S., Rousk, J., & Bååth, E. (2014). The effects of glucose loading rates on bacterial and fungal growth in soil. Soil Biology and Biochemistry, 70, 88–95. DOI

Rizaty, M. A. (2021). Berapa produksi cabai di Indonesia? Retrieved from website

Shafique, S., Asif, M., & Shafique, S. (2015). Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora. Pakistan Journal of Botany, 47(3), 1177-1182. Retrieved from PDF

Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., & Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71-78. DOI

Shuai, H.-W., Meng, Y.-J., Luo, X.-F., Chen, F., Qi, Y., Yang, W.-Y., & Shu, K. (2016). The roles of auxin in seed dormancy and germination. Hereditas (Beijing), 38(4), 314-322. DOI

Simamora, M., Basyuni, M., & Lisnawita. (2021). Potency of secondary metabolites of Trichoderma asperellum and Pseudomonas fluorescens in the growth of cocoa plants affected by vascular streak dieback. Biodiversitas Journal of Biological Diversity, 22(5), 2542-2547. DOI

Soesanto, L., Mugiastuti, E., Suyanto, A., & Rahayuniati, R. F. (2020). Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. Jurnal Hama dan Penyakit Tumbuhan Tropika, 20(1), 19–27. DOI

Soesanto, L., Solikhah, A. N., Mugiastuti, E., & Suharti, W. S. (2020). Application of Trichoderma harzianum T10 liquid formula based on soybean flour against cucumber seedlings damping-off (Pythium sp.). Akta Agrosia, 23(1), 11-18. DOI

Srinath, K. R., Chowdary, C. P., Palanisamy, P., Krishna A. V., Aparna, S., Ali, S. S., … Swetha, K. (2011). Formulation and evaluation of effervescent tablets of paracetamol. International Journal of Pharmaceutical Research and Development, 3(3), 76-104. Retrieved from website

Srivastava, M., Pandey, S., Shahid, M., Kumar, V., Singh, A., Trivedi, S., & Srivastava, Y. K. (2015). Trichoderma: A magical weapon against soil borne pathogens. African Journal of Agricultural Research, 10(50), 4591-4598. DOI

Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. DOI

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., … Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8, 127–139. DOI

Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159, 850. DOI

Waluyo, N. (2016). Persyaratan Teknis Minimal (PTM) mutu fisik benih beberapa komoditas sayuran. Iptek Tanaman Sayuran. Bandung: Balai Penelitian Tanaman Sayuran. Retrieved from website

Wongpia, A., & Lomthaisong, K. (2010). Changes in the 2DE protein profiles of chili pepper (Capsicum annum L) leaves in response to Fusarium oxysporum infection. Science Asia, 36, 259–270. DOI

Yao, Y., Dai, Q., Gao, R., Gan, Y., & Yi, X. (2021). Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS ONE, 16(3), e0246505. DOI

Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. DOI

Živković, S., Stojanović, S., Ivanović, Ž., Gavrilović, V., Popović, T., & Balaž, J. (2010). Screening of antagonistic ativity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences, 62(3), 611-623. Retrieved from PDF




DOI: http://doi.org/10.17503/agrivita.v44i2.3699

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.