Genotype by Environment Interaction of IPB New Plant Type Rice Lines in Three Irrigated Lowland Locations

Syaifullah Rahim, Willy Bayuardi Suwarno, Hajrial Aswidinnoor

Abstract


One essential objective of rice breeding is to obtain high-yielding varieties. This study aimed to (1) determine the effect of genotype (G), environment (E), and genotype by environment (G×E) interaction on agronomic traits and yield of 12 lowland rice genotypes, (2) estimate variance components and repeatability (3) identify promising rice genotypes with good agronomic performance and high yield potential. The trials were conducted in three irrigated lowland locations from June to November 2020, using a randomized complete block design with three replications. The results showed that the G×E interaction effect was significant on days to flowering, days to harvest, plant height, number of tillers, and panicle length. The genotype's main effect was significant on yield. Four IPB lines (IPB189-F-13-1-1, IPB189-F-23-2-2, IPB193-F-17-2-3, and IPB193-F-30-2-1) had a higher average yield than Ciherang and Inpari 32 varieties. The IPB189-F-23-2-2 had a panicle length stability across the three test locations and a higher average yield than the checks.


Keywords


G×E interaction; Rice breeding; Stability analysis

Full Text:

PDF

References


Akter, A., Hasan, M. J., Kulsum, M., Rahman, M., Paul, A., Lipi, L., & Akter, S. (2015). Genotype × environment interaction and yield stability analysis in hybrid rice (Oryza sativa L.) by AMMI biplot. Bangladesh Rice Journal, 19(2), 83–90. DOI

Amzeri, A., Daryono, B. S., & Syafii, M. (2020). Genotype by environment and stability analyses of dryland maize hybrids. SABRAO Journal of Breeding and Genetics, 52(4), 355–368. Retrieved from PDF

Aryana, M. I. G. P., & Wangiyana, W. (2016). Yield performance and adaptation of promising amphibious red rice lines on six growing environments in Lombok, Indonesia. AGRIVITA Journal of Agricultural Science, 38(1), 40–46. DOI

Becker, H. C., & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101(1), 1–23. DOI

Bhargava, K., Shivani, D., Pushpavalli, S., Sundaram, R. M., Beulah, P., & Senguttuvel, P. (2021). Genetic variability, correlation and path coefficient analysis in segregating population of rice. Electronic Journal of Plant Breeding, 12(2), 549–555. DOI

Blanche, S. B., Utomo, H. S., Wenefrida, I., & Myers, G. O. (2009). Genotype × environment interactions of hybrid and varietal rice cultivars for grain yield and milling quality. Crop Science, 49(6), 2011–2018. DOI

Breseghello, F., & Coelho, A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 61(35), 8277–8286. DOI

Chandrashekhar, S., Babu, R., Jeyaprakash, P., Umarani, R., Bhuvaneshwari, K., & Manonmani, S. (2020). Yield stability analysis in multi-environment trials of hybrid rice (Oryza sativa L.) in Northern India using GGE biplot analysis. Electronic Journal of Plant Breeding, 11(2), 665–673. DOI

Chattopadhyay, K., Marndi, B. C., Sarkar, R. K., & Singh, O. N. (2017). Stability analysis of backcross population for salinity tolerance at reproductive stage in rice. Indian Journal of Genetics and Plant Breeding, 77(1), 51–58. DOI

Chen, M., Li, Z., Huang, J., Yan, Y., Wu, T., Bian, M., … Du, X. (2021). Dissecting the meteorological and genetic factors affecting rice grain quality in Northeast China. Genes and Genomics, 43(8), 975–986. DOI

Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58(4), 1029–1034. DOI

Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 44(3), 705. DOI

Gomez, K. A., & Gomez, A. A. (1984). Statistical Procedures for Agriculture Research (2nd ed.). New York: John Wiley and Sons, Inc. Retrieved from PDF

Hasan-Ud-Daula, M., & Sarker, U. (2020). Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika, 52(2), 711–726. DOI

Hastini, T., Suwarno, W. B., Ghulamahdi, M., & Aswidinnoor, H. (2019). Correlation and regression among rice panicle branches traits. Biodiversitas Journal of Biological Diversity, 20(4), 1140–1146. DOI

Hastini, T., Suwarno, W. B., Ghulamahdi, M., & Aswidinnoor, H. (2020). Interaksi genotipe × musim karakter percabangan malai tiga genotipe padi sawah. Jurnal Agronomi Indonesia, 48(1), 1–7. DOI

Hairmansis, A., Supartopo, Aswidinnoor, H., Suwarno, W. B., Suwarto, Riyanto, A., … Suwarno. (2019). High yielding and blast resistant rice cultivars developed for tropical upland area. SABRAO Journal of Breeding & Genetics, 51(2), 117-127. Retrieved from PDF

He, D., Wang, E., Wang, J., & Lilley, J. M. (2017). Genotype × environment × management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology, 247(1), 424–433. DOI

Heidari, S., Azizinezhad, R., & Haghparast, R. (2016). Yield stability analysis in advanced durum wheat genotypes by using AMMI and GGE biplot models under diverse environment. Indian Journal of Genetics and Plant Breeding, 76(3), 274. DOI

Jayaningsih, E. D., Suwarno, W. B., Nindita, A., & Aswidinnoor, H. (2019). Interaksi genotipe x lingkungan pada morfologi malai galur-galur padi (Oryza sativa L.) bermalai lebat. Jurnal Agronomi Indonesia, 47(3), 240–247. DOI

Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science and Technology, 100, 51–66. DOI

Kang, M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85(3), 754–757. DOI

Kartahadimaja, J., Erlinda Syuriani, E., & Sutrisno, H. (2019). Adaptation of ten new paddy rice grown on different environmental conditions. Jurnal Ilmiah Inovasi, 19(2), 36–43. DOI

Kartahadimaja, J., & Syuriani, E. E. (2020). Uji multilokasi sepuluh galur padi untuk menghasilkan varietas unggul baru. Jurnal Penelitian Pertanian Terapan, 17(3), 175–185. DOI

Kartina, N., Purwoko, B. S., Dewi, I. S., Wirnas, D., & Sugiyanta. (2019). Genotype by environment interaction and yield stability analysis of doubled haploid lines of upland rice. SABRAO Journal of Breeding & Genetics, 51(2), 191–204. Retrieved from PDF

Khairullah, I., Asim, Azwar, & Hayati, I. (2019). Stabilitas hasil galur-galur padi di lahan sulfat masam dan bergambut untuk meningkatkan produktivitas lahan rawa pasang surut. Jurnal Pertanian Agros, 21(2), 182–190. Retrieved from website

Kumar, V., Kharub, A. S., Verma, R. P. S., & Verma, A. (2016). AMMI, GGE biplots and regression analysis to comprehend the G × E interaction in multi-environment barley trials. Indian Journal of Genetics and Plant Breeding, 76(2), 202–204. DOI

Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand. Crop Science, 26(5), 894–900. DOI

Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, R. V., & Paris, T. R. (2012). Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Advances in Agronomy, 115, 299–352. DOI

Mackill, D. J., & Khush, G. S. (2018). IR64: a high-quality and high-yielding mega variety. Rice, 11, 18. DOI

Mattjik, A. A., & Sumertajaya, I. (2013). Perancangan percobaan dengan aplikasi SAS dan Minitab. Bogor: IPB Press. Retrieved from website

Parimala, K., Raju, C. S., Kumar, S. S., & Reddy, S. N. (2019). Stability analysis over different environments for grain yield and its components in hybrid rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 10(2), 389. DOI

Peng, S., Khush, G. S., & Cassman, K. G. (1994). Evaluation of a new plant ideotype for increased yield potential. In K. G. Cassman (Ed.), Breaking the Yield Barrier (pp. 5-20). Philippines: International Rice Research Institute.

Phapumma, A., Monkham, T., Chankaew, S., Kaewpradit, W., Harakotr, P., & Sanitchon, J. (2020). Characterization of indigenous upland rice varieties for high yield potential and grain quality characters under rainfed conditions in Thailand. Annals of Agricultural Sciences, 65(2), 179–187. DOI

Rahayu, S., Ghulamahdi, M., Suwarno, W. B., & Aswidinnoor, H. (2018). Morfologi malai padi (Oryza sativa L.) pada beragam aplikasi pupuk nitrogen. Jurnal Agronomi Indonesia, 46(2), 145–152. DOI

Sabaghnia, N., Karimizadeh, R., & Mohammadi, M. (2014). Graphic analysis of yield stability in new improved lentil (Lens culinaris Medik.) genotypes using nonparametric statistics. Acta Agriculturae Slovenica, 103(1), 113–127. DOI

Satoto, Rumanti, I. A., & Widyastuti, Y. (2016). Yield stability of new hybrid rice across locations. AGRIVITA Journal of Agricultural Science, 38(1), 33–39. DOI

Senguttuvel, P., Sravanraju, N., Jaldhani, V., Divya, B., Beulah, P., Nagaraju, P., … Subrahmanyam, D. (2021). Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature. Scientific Reports, 11(1), 1–13. DOI

Shafii, B., & Price, W. J. (1998). Analysis of genotype-by-environment interaction using the additive main effects and multiplicative interaction model and stability estimates. Journal of Agricultural, Biological, and Environmental Statistics, 3(3), 335–345. DOI

Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. (2017). Evaluation of genotype × environment interaction in rice based on ammi model in Iran. Rice Science, 24(3), 173–180. DOI

Sheelamary, S., & Karthigeyan, S. (2021). Evaluation of promising commercial sugarcane genotypes for stability by AMMI analysis. Electronic Journal of Plant Breeding, 12(2), 371–378. DOI

Statistics Indonesia. (2020). Rice harvested area and production in Indonesia 2019 the results of a survey of the area sample frame. In Official News of Statistics No.16/02/Th. XXIII, February 4, 2020.

Sudewi, S., Ala, A., Baharuddin, & Farid, M. (2020). Keragaman organisme pengganggu tanaman (OPT) pada tanaman padi varietas unggul baru (VUB) dan varietas lokal pada percobaan semi lapangan. Agrikultura, 31(1), 15. DOI

Syukur, M., Sujiprihati, S., & Yunianti, R. (2018). Teknik pemuliaan tanaman. Jakarta: Penebar Swadaya. Retrieved from DOI

Torres, R. O., & Henry, A. (2018). Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crops Research, 220, 37–45. DOI

Wricke, G. (1962). Evaluation method for recording ecological differences in field trials. Z Pflanzenzücht, 47(1), 92–96.

Yang, Z., Li, N., Ma, J., Sun, Y., & Xu, H. (2014). High-yielding traits of heavy panicle varieties under triangle planting geometry: A new plant spatial configuration for hybrid rice in China. Field Crops Research, 168, 135–147. DOI




DOI: http://doi.org/10.17503/agrivita.v45i1.3685

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.