Age Estimation of Paddy using Sentinel-2 Imagery: A Case Study in Java Island, Indonesia

Masita Dwi Mandini Manessa, Supriatna Supriatna, Iqbal Putut Ash Sidik

Abstract


Plant age plays a crucial role in determining rice yield. The study on the prediction model of spatially specific rice plant age was still less reported, especially that based on high spatial resolution multispectral data. This study investigates the use of Geographic Weighted Regression (GWR) and extracted vegetation indexes (VI) from the Sentinel-2 multispectral image to build the prediction model based on the time-series dataset from the paddy field observation station. The GWR result was also compared to the Linear Regression (LR) model to demonstrate the impact of including spatial attribute into the prediction model. Since the majority of paddy field observation stations are situated on Java Island, it served as the research location for this investigation. The results indicate that VI from the Sentinel-2 image shows a significant correlation with the age of the paddy, then the VI was able to use as a predictor to build the paddy age prediction model. In the statistical evaluation of the model, the coefficient of determination values (R2) reached 0.65, and the RMSE of estimate value was 15 days.


Keywords


GWR; Java Island; Paddy age; Sentinel-2; Vegetation index

Full Text:

PDF

References


Bivand, R., Yu, D., Nakaya, T., & Garcia-Lopez, M-A. (2022). Geographically Weighted Regression [R package spgwr version 0.6-35]. website

BPS (Indonesia Statistic Agency). (2022). Indonesia dalam angka 2022. website

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted Regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. DOI

Casanova, D., Epema, G. F., & Goudriaan, J. (1998). Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Research, 55(1–2), 83–92. DOI

dela Torre, D. M. G., Gao, J., Macinnis-Ng, C., & Shi, Y. (2021). Phenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2 imagery in Google Earth Engine. Geo-Spatial Information Science, 24(4), 695–710. DOI

Ding, M., Guan, Q., Li, L., Zhang, H., Liu, C., & Zhang, L. (2020). Phenology-based rice paddy mapping using multi-source satellite imagery and a fusion algorithm applied to the Poyang Lake plain, Southern China. Remote Sensing, 12(6), 1022. DOI

Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., & Moore, B. (2015). Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 160, 99–113. DOI

Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 148(3–4), 501–508. DOI

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. DOI

Guruprasad, R. B., Saurav, K., & Randhawa, S. (2019). Machine Learning Methodologies for Paddy Yield Estimation in India: a Case Study. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 7254–7257. DOI

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. DOI

Huang, C.-W., Huang, C.-C., Yang, C.-K., Wu, T.-H., Tsai, Y.-Z., & Miao, P.-L. (2003). Determination of Nitrogen Content in Rice Crop Using Multi-Spectral Imaging. 2003 ASAE Annual Meeting, 031132. DOI

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. DOI

Huete, A. R., Didan, K., Huete, A., Didan, K., Leeuwen, W. Van, Jacobson, A., Solanos, R., & Laing, T. (1999). Modis Vegetation Index (MOD 13) Algorithm Theoretical Basis Document Principal Investigators Development Team MODIS Product ID: MOD13. PDF

Inoue, S., Ito, A., & Yonezawa, C. (2020). Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine. Remote Sensing, 12(10), 1622. DOI

Kalender Tanam Terpadu dan Dinamik. (2020). Retrieved 18 October 2022, from website

Kanke, Y., Tubaña, B., Dalen, M., & Harrell, D. (2016). Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precision Agriculture, 17(5), 507–530. DOI

Kucuk, C., Taskin, G., & Erten, E. (2016). Paddy-Rice Phenology Classification Based on Machine-Learning Methods Using Multitemporal Co-Polar X-Band SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2509–2519. DOI

Motohka, T., Nasahara, K. N., Miyata, A., Mano, M., & Tsuchida, S. (2009). Evaluation of optical satellite remote sensing for rice paddy phenology in monsoon Asia using a continuous in situ dataset. International Journal of Remote Sensing, 30(17), 4343–4357. DOI

Mulyono, S., Fanany, M. I., & Basaruddin, T. (2012). A paddy growth stages classification using MODIS remote sensing images with balanced branches support vector machines. 2012 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2012 - Proceedings, 203–206. website

Mulyono, S., Pianto, T. A., Fanany, M. I., & Basaruddin, T. (2013). An ensemble incremental approach of Extreme Learning Machine (ELM) for paddy growth stages classification using MODIS remote sensing images. 2013 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2013, 309–314. DOI

Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., & Wu, D. (2021). An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 282–296. DOI

Nuarsa, I. W., & Nishio, F. (2010). Relationships between rice growth parameters and remote sensing data. International Journal of Remote Sensing and Earth Sciences (IJReSES), 4(1). DOI

Palakuru, M., & Yarrakula, K. (2019a). Study on paddy phenomics eco-system and yield estimation using multi-temporal remote sensing approach. Indian Journal of Ecology, 46(2), 293–297. website

Palakuru, M., & Yarrakula, K. (2019b). Study on paddy phenomics ecosystem and yield estimation using space-borne multi sensor remote sensing data. Journal of Agrometeorology, 21(2), 171–175. website

Rouse, J. W., Jr., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation (Contractor Report (CR) E75-10354 NASA-CR-144661 RSC-1978–4; pp. 1–390). Texas A&M University, Remote Sensing Center, College Station, Texas. website

Setiawan, Y., Rustiadi, E., Yoshino, K., Liyantono, & Effendi, H. (2014). Assessing the Seasonal Dynamics of the Java’s Paddy Field Using MODIS Satellite Images. ISPRS International Journal of Geo-Information, 3(1), 110–129. DOI

Shihua, L., Jingtao, X., Ping, N., Jing, Z., Hongshu, W., & Jingxian, W. (2014). Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China. International Journal of Agricultural and Biological Engineering, 7(6), 28–36. DOI

Shiu, Y. S., & Chuang, Y. C. (2019). Yield estimation of paddy rice based on satellite imagery: Comparison of global and local regression models. Remote Sensing, 11(2). DOI

Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agronomy Journal, 98(4), 968–977. DOI

Sukmono, A., Nugraha, A. L., Ariwahid, A. N., & Shabrina, N. (2020). Growth models and age estimation of rice using multitemporal vegetation index on landsat 8 imagery. Advances in Science, Technology and Engineering Systems, 5(5), 506–511. DOI

Wakamori, K., & Ichikawa, D. (2018). The Combined Use of Sentinel-1, Sentinel-2 and Landsat 7&8 Data for Estimating Heading Date of Paddy Rice. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018-July, 7715–7718. DOI

Xiao, W., Xu, S., & He, T. (2021). Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sensing, 13(5), 990. DOI

Zhang, W., Liu, H., Wu, W., Zhan, L., & Wei, J. (2020). Mapping Rice Paddy Based on Machine Learning with Sentinel-2 Multi-Temporal Data: Model Comparison and Transferability. Remote Sensing, 12(10), 1620. DOI




DOI: http://doi.org/10.17503/agrivita.v41i0.3106

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.