Exploring The Potency of Microalgae-Based Biofertilizer and Its Impact on Oil Palm Seedlings Growth

Indiani Sani, Yudistira Wahyu Kurnia, Hana Christine Sinthya, Richard Anthony, Elizabeth Caroline Situmorang, Condro Utomo, Tony Liwang

Abstract


Indonesia is a major producer of palm oil. Consequently, the use of chemical fertilizers has become more extensive. Microalgae represent a potential alternative for enhancing and protecting crops based on their cell elements. This study applies dry biomass or liquid culture formulation of the green microalgae Haematococcus pluvialis to the rhizosphere of oil palm pre-nursery as a biofertilizer. Soil application of microalgae biomass of 0.5 g/l (MA) or liquid culture of 10% (v/v) (BCMA) is carried out to assess its effects on 4-months-old oil palm at the nursery stage. The compatibility test between microalgae and bio fungicide agents in agricultural practices, Trichoderma spp., is also tested on both microalgae formulations. The result shows that both microalgae biomass and liquid culture, alone or combined with Trichoderma spp., give a better growth performance to the oil palm. The application of MA and BCMA result in a maximum increment of plant height, leaves count, and chlorophyll content. Furthermore, the application of BCMA gives better oil palm growth performance, which may probably be influenced by the accessibility of nutrients for microalgae growth. The study reveals that soil application of microalgae as biofertilizers can improve oil palm growth performance.


Keywords


Haematococcus pluvialis; Microalgae; Pre nursery; Vegetative performance

Full Text:

PDF

References


Abdel-Raouf N. (2012). Agricultural importance of algae. African Journal of Biotechnology, 11(54), 11648–11658. https://doi.org/10.5897/ajb11.3983

Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2019). Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical Reviews in Biotechnology, 39(8), 981–998. https://doi.org/10.1080/07388551.2019.1654972

Agwa, O. K., Ogugbue, C. J., & Williams, E. E. (2017). Field Evidence of Chlorella vulgaris Potentials as a Biofertilizer for Hibiscus esculentus. International Journal of Agricultural Research, 12(4), 181–189. https://doi.org/10.3923/ijar.2017.181.189

Ajeng, A. A., Abdullah, R., Malek, M. A., Chew, K. W., Ho, Y. C., Ling, T. C., Lau, B. F., & Show, P. L. (2020). The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions. Processes, 8(12), 1–16. https://doi.org/10.3390/pr8121681

Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M., & Gardner, R. D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54(February), 102200. https://doi.org/10.1016/j.algal.2021.102200

Ayanda, A. F., Jusop, S., Ishak, C. F., & Othman, R. (2020). Utilization of magnesium-rich synthetic gypsum as magnesium fertilizer for oil palm grown on acidic soil. PLoS ONE, 15(6 June), 1–17. https://doi.org/10.1371/journal.pone.0234045

Babiak, W., & Krzemińska, I. (2021). Extracellular polymeric substances (EPS) as microalgal bioproducts: A review of factors affecting EPS synthesis and application in flocculation processes. Energies, 14(13). https://doi.org/10.3390/en14134007

Behera, B., Venkata Supraja, K., & Paramasivan, B. (2021). Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresource Technology, 339(May), 125588. https://doi.org/10.1016/j.biortech.2021.125588

Casella, P., Iovine, A., Mehariya, S., Marino, T., Musmarra, D., & Molino, A. (2020). Smart method for carotenoids characterization in haematococcus pluvialis red phase and evaluation of astaxanthin thermal stability. Antioxidants, 9(5), 1–17. https://doi.org/10.3390/antiox9050422

Chen, D., Hou, Q., Jia, L., & Sun, K. (2021). Combined Use of Two Trichoderma Strains to Promote Growth of Pakchoi (Brassica chinensis L.). Agronomy, 11(4), 726. https://doi.org/10.3390/agronomy11040726

Chia, W. Y., Chew, K. W., Le, C. F., Lam, S. S., Chee, C. S. C., Ooi, M. S. L., & Show, P. L. (2020). Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environmental Pollution, 267, 115662. https://doi.org/10.1016/j.envpol.2020.115662

Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M. C., & Rouphael, Y. (2018). Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Frontiers in Plant Science, 871(December), 1–6. https://doi.org/10.3389/fpls.2018.01782

Contreras-Cornejo, H. A., Ortiz-Castro, R., López-Bucio, J., & Mukherjee, P. K. (2013). Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. Trichoderma: Biology and Applications, 175, 96.

Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367–2377. https://doi.org/10.1007/s10811-015-0775-2

Costa, O. Y. A., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9(JUL), 1–14. https://doi.org/10.3389/fmicb.2018.01636

CPOPC. (2020). Palm oil suply demand outlook report 2020 (p. 10). CPOPC. https://www.cpopc.org/wp-content/uploads/2020/04/Palm-Oil-Supply-Demand-Outlook-2020-EDIT-Final.pdf

Dash, N. P., Kumar, A., Kaushik, M. S., & Singh, P. K. (2016). Cyanobacterial (unicellular and heterocystous) biofertilization to wetland rice influenced by nitrogenous agrochemical. Journal of Applied Phycology, 28(6), 3343–3351. https://doi.org/10.1007/s10811-016-0871-y

de Souza, M. H. B., Calijuri, M. L., Assemany, P. P., Castro, J. de S., & de Oliveira, A. C. M. (2019). Soil application of microalgae for nitrogen recovery: A life-cycle approach. Journal of Cleaner Production, 211, 342–349. https://doi.org/10.1016/j.jclepro.2018.11.097

Dineshkumar, R., Ahamed Rasheeq, A., Arumugam, A., Nathiga Nambi, K. S., & Sampathkumar, P. (2019). Marine microalgal extracts on cultivable crops as a considerable bio-fertilizer: A review. Indian Journal of Traditional Knowledge, 18(4), 849–854.

El-Baz, F. K., Hussein, R. A., Mahmoud, K., & Abdo, S. M. (2018). Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LCDAD/ESI-MS. Phytotherapy Research, 32(2), 298–304. https://doi.org/10.1002/ptr.5976

Elarroussi, H., Elmernissi, N., Benhima, R., Meftah El Kadmiri, I., Bendaou, N., & Smouni, A. (2016). Microalgae polysaccharides a promising plant growth biostimulant. J. Algal Biomass Utln, 7(4), 55–63.

Elshahawy, I. E., & El-Sayed, A. E. K. B. (2018). Maximizing the efficacy of trichoderma to control cephalosporium maydis, causing maize late wilt disease, using freshwater microalgae extracts. Egyptian Journal of Biological Pest Control, 28(1), 1–11. https://doi.org/10.1186/s41938-018-0052-1

Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28(2), 1051–1061. https://doi.org/10.1007/s10811-015-0625-2

Gonçalves, A. L. (2021). The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Applied Sciences (Switzerland), 11(2), 1–21. https://doi.org/10.3390/app11020871

González, A., Castro, J., Vera, J., & Moenne, A. (2013). Seaweed Oligosaccharides Stimulate Plant Growth by Enhancing Carbon and Nitrogen Assimilation, Basal Metabolism, and Cell Division. Journal of Plant Growth Regulation, 32(2), 443–448. https://doi.org/10.1007/s00344-012-9309-1

Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625–644. https://doi.org/10.3390/md9040625

Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 1–17. https://doi.org/10.3390/f10090758

Jochum, M., Moncayo, L. P., & Jo, Y. K. (2018). Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor. PLoS ONE, 13(9), 1–13. https://doi.org/10.1371/journal.pone.0203456

Kang, Y., Kim, M., Shim, C., Bae, S., & Jang, S. (2021). Potential of Algae–Bacteria Synergistic Effects on Vegetable Production. Frontiers in Plant Science, 12(4), 1–13. https://doi.org/10.3389/fpls.2021.656662

Kaushik, B. D. (2014). Developments in cyanobacterial biofertilizer. Proceedings of the Indian National Science Academy, 80(2), 379–388. https://doi.org/10.16943/ptinsa/2014/v80i2/55115

Kholssi, R., Marks, E. A. N., Miñón, J., Montero, O., Debdoubi, A., & Rad, C. (2019). Biofertilizing Effect of Chlorella sorokiniana Suspensions on Wheat Growth. Journal of Plant Growth Regulation, 38(2), 644–649. https://doi.org/10.1007/s00344-018-9879-7

Kumar, A., & Singh, J. S. (2020). Microalgal biofertilizers. In Handbook of Microalgae-Based Processes and Products. Elsevier Inc. https://doi.org/10.1016/b978-0-12-818536-0.00017-8

Kumar, D., Kvíderová, J., Kaštánek, P., & Lukavský, J. (2017). The green alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light. Engineering in Life Sciences, 17(9), 1030–1038. https://doi.org/10.1002/elsc.201700014

Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

Liu, X., Zhang, M., Liu, H., Zhou, A., Cao, Y., & Liu, X. (2018). Preliminary characterization of the structure and immunostimulatory and anti-aging properties of the polysaccharide fraction of: Haematococcus pluvialis. RSC Advances, 8(17), 9243–9252. https://doi.org/10.1039/c7ra11153c

López-Arredondo, D. L., Leyva-González, M. A., Alatorre-Cobos, F., & Herrera-Estrella, L. (2013). Biotechnology of nutrient uptake and assimilation in plants. International Journal of Developmental Biology, 57(6–8), 595–610. https://doi.org/10.1387/ijdb.130268lh

Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends in Plant Science, 20(5), 273–282. https://doi.org/10.1016/j.tplants.2015.01.006

Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0

Maqubela, M. P., Mnkeni, P. N. S., Muchaonyerwa, P., D’acqui, L. P., & Pardo, M. T. (2010). Effects of cyanobacteria strains selected for their bioconditioning and biofertilization potential on maize dry matter and soil nitrogen status in a South African soil. Soil Science and Plant Nutrition, 56(4), 552–559. https://doi.org/10.1111/j.1747-0765.2010.00487.x

Morais. (2013). Influence of the Growth Regulators Kinetin and 2,4-D on the Growth of Two Chlorophyte Microalgae, Haematococcus pluvialis and Dunaliella salina. Journal of Basic & Applied Sciences, March 2018. https://doi.org/10.6000/1927-5129.2013.09.40

Ortiz-Moreno, M. L., Sandoval-Parra, K. X., & Solarte-Murillo, L. V. (2019). Chlorella, a potential biofertilizer? Orinoquia, 23(2), 71–78. https://doi.org/10.22579/20112629.582

Paudel, Y., & Pradhan, S. (2012). Role of blue green algae in rice productivity. Agriculture and Biology Journal of North America, 3(8), 332–335. https://doi.org/10.5251/abjna.2012.3.8.332.335

Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G., & Kramm, V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of Applied Phycology, 21(1), 135–144. https://doi.org/10.1007/s10811-008-9342-4

Rasdi, N. W., & Qin, J. G. (2015). Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of Applied Phycology, 27(6), 2221–2230. https://doi.org/10.1007/s10811-014-0495-z

Rivera-Solís, R. A., Peraza-Echeverria, S., Echevarría-Machado, I., & Herrera-Valencia, V. A. (2014). Chlamydomonas reinhardtii has a small family of purple acid phosphatase homologue genes that are differentially expressed in response to phytate. Annals of Microbiology, 64(2), 551–559. https://doi.org/10.1007/s13213-013-0688-8

Saadaoui, I., Al Ghazal, G., Bounnit, T., Al Khulaifi, F., Al Jabri, H., & Potts, M. (2016). Evidence of thermo and halotolerant Nannochloris isolate suitable for biodiesel production in Qatar Culture Collection of Cyanobacteria and Microalgae. Algal Research, 14, 39–47. https://doi.org/10.1016/j.algal.2015.12.019

Saadaoui, I., Sedky, R., Rasheed, R., Bounnit, T., Almahmoud, A., Elshekh, A., Dalgamouni, T., al Jmal, K., Das, P., & Al Jabri, H. (2019). Assessment of the algae-based biofertilizer influence on date palm (Phoenix dactylifera L.) cultivation. Journal of Applied Phycology, 31(1), 457–463. https://doi.org/10.1007/s10811-018-1539-6

Serwotka-Suszczak, A. M., Marcinkowska, K. A., Smieszek, A., Michalak, I. M., Grzebyk, M., Wiśniewski, M., & Marycz, K. M. (2019). The Haematococcus pluvialis extract enriched by bioaccumulation process with Mg(II) ions improves insulin resistance in equine adiposederived stromal cells (EqASCs). Biomedicine and Pharmacotherapy, 116(March). https://doi.org/10.1016/j.biopha.2019.108972

Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 95–98. https://doi.org/10.3390/ijms19071856

Situmorang, E. C., Prameswara, A., Sinthya, H. C., Toruan-Mathius, N., & Liwang, T. (2013). Morphology and Histology Identification of Fungal Endophytes from Oil Palm Roots in Ganoderma boninense Endemic Area. Microbiology Indonesia, 7(4), 9.

Toribio, A. J., Suárez-Estrella, F., Jurado, M. M., López, M. J., López-González, J. A., & Moreno, J. (2020). Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Reports, 26. https://doi.org/10.1016/j.btre.2020.e00449

Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70(10), 1919–1929. https://doi.org/10.1016/j.chemosphere.2007.07.038

Uysal, O., Uysal, F. O., & Ekinci, K. (2015). Evaluation of microalgae as microbial fertilizer. European Journal of Sustainable Development, 4(2), 77.

Zhao, L., Wang, Y., & Kong, S. (2020). Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. International Microbiology, 23(4), 501–509. https://doi.org/10.1007/s10123-020-00122-4




DOI: http://doi.org/10.17503/agrivita.v44i1.3102

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.