Chemical Properties and Micromorphology of Biochars Resulted from Pyrolysis of Agricultural Waste at Different Temperature
Abstract
Keywords
Full Text:
PDFReferences
Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. DOI
Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72-78. DOI
Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., … Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615-622. DOI
Aktar, S., Hossain, Md A., Rathnayake, N., Patel, S., Gasco, G., Mendez, A., … Paz-Ferreiro, J. (2022). Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. Journal of Analytical and Applied Pyrolysis, 164, 105542. DOI
Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., … Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401-410. DOI
Bolan, N., Mahimairaja, S., Kunhikrishnan, A., Seshadri, B., & Thangarajan, R. (2015) Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation. Environmental Science and Pollution Research, 22, 8866–8875. DOI
Boresi, A. P., & Schmidt, R. J. (2003). Advanced mechanics of materials (6th ed.). Wiley. Retrieved from website
Browning, B. L. (1967). Methods of wood chemistry (vol. II). New York, USA: John Wiley & Sons. Retrieved from website
Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy, 35(3), 1182-1189. DOI
Campos, P., Miller, A. Z., Knicker, H., Costa-Pereira, M. F., Merino, A., & De la Rosa, J. M. (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105, 256-267. DOI
Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., & Ma, Z. (2018). Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management, 169, 228-237. DOI
Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653. DOI
Fu, M.-M., Mo, C.-H., Li, H., Zhang, Y.-N., Huang, W.-X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236, 117637. DOI
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), e113888. DOI
Gao, N., Li, J., Qi, B., Li, A., Duan, Y., & Wang, Z. (2014). Thermal analysis and products distribution of dried sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 43-48. DOI
Gómez-Serrano, V., Piriz-Almeida, F., Durán-Valle, C. J., & Pastor-Villegas, J. (1999). Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon, 37(10), 1517–1528. DOI
Gonzalez, M. E., Cea, M., Medina, J., Gonzalez, A., Diez, M. C., Cartes, P., ... Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of The Total Environment, 505, 446-453. DOI
Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550-567. DOI
Hassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of The Total Environment, 744, 140714. DOI
Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., & Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228. DOI
Indrawati, U. S. Y. V., Ma'as, A., Utami, S. N. H., & Hanuddin, E. (2017). Characteristics of three biochar types with different pyrolysis time as ameliorant of peat soil. Indian Journal of Agricultural Research, 51(5), 458-462. DOI
Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., & Huang, L. (2016). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39, 403–415. DOI
Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T., & Sanchez-Monedero, M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology, 110, 396-404. DOI
Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H., & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials, 300, 243-253. DOI
Kong, S.-H., Loh, S.-K., Bachmann, R. T., Rahim, S. A., & Salimon, J. (2014). Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 39, 729-739. DOI
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science and technology and implementation (2nd ed.). London: Routledge. DOI
Masulili, A., Utomo, W. H., & Syechfani. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39-47. DOI
Mayakaduwa, S. S., Kumarathilaka, P., Herath, I., Ahmad, M., Al-Wabel, M., Ok, Y. S., … Vithanage, M. (2016). Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere, 144, 2516-2521. DOI
Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., & Tonon, G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy, 62, 149-157. DOI
Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture, 7, 269–276. DOI
Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change, 11, 429–444. DOI
Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China. Soil and Tillage Research, 112, 159-166. DOI
Sastrohamidjojo, H. (2018). Spectroscopic basics. Gadjah Mada University Press. Retrieved from website
Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11-12), 1469-1482. DOI
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass. Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42622. Golden, Colorado: National Renewable Energy Laboratory. Retrieved from PDF
Sohi, S. P. (2012). Carbon storage with benefits. Science, 338(6110), 1034-1035. DOI
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82. DOI
Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1(2), 289-303. DOI
Srinivasan, P., Sarmah, A. K., Smernik, R., Das, O., Farid, M., & Gao, W. (2015). A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Science of The Total Environment, 512-513, 495-505. DOI
Stella Mary, G., Sugumaran, P., Niveditha, S., Ramalakshmi, B., Ravichandran, P., & Seshadri, S. (2016). Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture, 5, 43–53. DOI
Sun, L., Wan, S., & Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406-413. DOI
Taherymoosavi, S., Joseph, S., Pace, B., & Munroe, P. (2018). A comparison between the characteristics of single- and mixed-feedstock biochars generated from wheat straw and basalt. Journal of Analytical and Applied Pyrolysis, 129, 123-133. DOI
Usevičiūtė, L., & Baltrėnaitė-Gedienė, E. (2021). Dependence of pyrolysis temperature and lignocellulosic physical-chemical properties of biochar on its wettability. Biomass Conversion and Biorefinery, 11, 2775–2793. DOI
Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86. DOI
Waqas, M., Li, G., Khan, S., Shamshad, I., Reid, B. J., Qamar, Z., & Chao, C. (2015). Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environmental Science and Pollution Research, 22, 12114–12123. DOI
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergi, 47, 268-276. DOI
Yang, X., Weicheng, Ng., Wong, B. S. E., Baeg, G. H., Wang, C.-H., & Ok, Y. S. (2018). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178-185. DOI
Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. DOI
Zaher, U., Buffiere, P., Steyer, J.-P., & Chen, S. (2009). A procedure to estimate proximate analysis of mixed organic wastes. Water Environment Research, 81(4), 407-415. DOI
Zhang, X., Zhang, S., Yang, H, Shao, J., Chen, Y., Feng, Y., Chen, H. (2015). Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy, 91, 903-910. DOI
Zhao, C., Qiao, X., Cao, Y., & Shao, Q. (2017). Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel, 205, 184-191. DOI
Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1-9. DOI
Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 112, 201-213. DOI
Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169-1179. DOI
DOI: http://doi.org/10.17503/agrivita.v41i0.3085
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.