Chemical Properties and Micromorphology of Biochars Resulted from Pyrolysis of Agricultural Waste at Different Temperature

Nur Indah Mansyur, Eko Hanudin, Benito Heru Purwanto, Sri Nuryani Hidayah Utami

Abstract


Biochar quality is influenced by the type of its raw material and pyrolysis temperature. Nevertheless, the quality criteria of biochar as a nutrient carrier remain unanswered. This study aimed to find the chemical properties, micromorphology, and optimum pyrolysis temperature from various agricultural wastes to obtain good biochar as a nutrient carrier. This experiment was conducted at three level temperatures: 400, 500, and 600°C, and the raw materials were coconut shells, oil palm shells, and corn stalks. The chemical and physical properties of biochar were: pH-H2O, OC, CEC, total N, P, K, Mg, Ca, and Na, ash, functional groups, amorphous carbon, morphology, and SSA. The results show that the coconut shells and oil palm shells biochars contained high levels of N-total and the chain-C aromatic, and the pore structure was solid and regular. Corn stalks biochar containing ash is high, and C-aromatic is low and fragile. Increased temperature of pyrolysis produced well-crystallized minerals. It is concluded that 500°C is the optimum temperature for oil palm shells pyrolysis resulting in biochar with the highest C-aromatic structure and arrangement of pores which are strong, regular and uniform, and high stability, but the nutrient content was low.

Keywords


Agricultural waste; Biochar; Lignocellulosic; Pore structure

Full Text:

PDF

References


Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. DOI

Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72-78. DOI

Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., … Ok, Y. S. (2013). Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, 615-622. DOI

Aktar, S., Hossain, Md A., Rathnayake, N., Patel, S., Gasco, G., Mendez, A., … Paz-Ferreiro, J. (2022). Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. Journal of Analytical and Applied Pyrolysis, 164, 105542. DOI

Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., … Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401-410. DOI

Bolan, N., Mahimairaja, S., Kunhikrishnan, A., Seshadri, B., & Thangarajan, R. (2015) Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation. Environmental Science and Pollution Research, 22, 8866–8875. DOI

Boresi, A. P., & Schmidt, R. J. (2003). Advanced mechanics of materials (6th ed.). Wiley. Retrieved from website

Browning, B. L. (1967). Methods of wood chemistry (vol. II). New York, USA: John Wiley & Sons. Retrieved from website

Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy, 35(3), 1182-1189. DOI

Campos, P., Miller, A. Z., Knicker, H., Costa-Pereira, M. F., Merino, A., & De la Rosa, J. M. (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105, 256-267. DOI

Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., & Ma, Z. (2018). Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Conversion and Management, 169, 228-237. DOI

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653. DOI

Fu, M.-M., Mo, C.-H., Li, H., Zhang, Y.-N., Huang, W.-X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236, 117637. DOI

Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), e113888. DOI

Gao, N., Li, J., Qi, B., Li, A., Duan, Y., & Wang, Z. (2014). Thermal analysis and products distribution of dried sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 105, 43-48. DOI

Gómez-Serrano, V., Piriz-Almeida, F., Durán-Valle, C. J., & Pastor-Villegas, J. (1999). Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon, 37(10), 1517–1528. DOI

Gonzalez, M. E., Cea, M., Medina, J., Gonzalez, A., Diez, M. C., Cartes, P., ... Navia, R. (2015). Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Science of The Total Environment, 505, 446-453. DOI

Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550-567. DOI

Hassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of The Total Environment, 744, 140714. DOI

Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., & Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228. DOI

Indrawati, U. S. Y. V., Ma'as, A., Utami, S. N. H., & Hanuddin, E. (2017). Characteristics of three biochar types with different pyrolysis time as ameliorant of peat soil. Indian Journal of Agricultural Research, 51(5), 458-462. DOI

Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., & Huang, L. (2016). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39, 403–415. DOI

Jindo, K., Suto, K., Matsumoto, K., Garcia, C., Sonoki, T., & Sanchez-Monedero, M. A. (2012). Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology, 110, 396-404. DOI

Khan, S., Waqas, M., Ding, F., Shamshad, I., Arp, H. P. H., & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials, 300, 243-253. DOI

Kong, S.-H., Loh, S.-K., Bachmann, R. T., Rahim, S. A., & Salimon, J. (2014). Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 39, 729-739. DOI

Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science and technology and implementation (2nd ed.). London: Routledge. DOI

Masulili, A., Utomo, W. H., & Syechfani. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39-47. DOI

Mayakaduwa, S. S., Kumarathilaka, P., Herath, I., Ahmad, M., Al-Wabel, M., Ok, Y. S., … Vithanage, M. (2016). Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere, 144, 2516-2521. DOI

Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., & Tonon, G. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy, 62, 149-157. DOI

Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture, 7, 269–276. DOI

Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change, 11, 429–444. DOI

Peng, X., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China. Soil and Tillage Research, 112, 159-166. DOI

Sastrohamidjojo, H. (2018). Spectroscopic basics. Gadjah Mada University Press. Retrieved from website

Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11-12), 1469-1482. DOI

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass. Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42622. Golden, Colorado: National Renewable Energy Laboratory. Retrieved from PDF

Sohi, S. P. (2012). Carbon storage with benefits. Science, 338(6110), 1034-1035. DOI

Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82. DOI

Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1(2), 289-303. DOI

Srinivasan, P., Sarmah, A. K., Smernik, R., Das, O., Farid, M., & Gao, W. (2015). A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Science of The Total Environment, 512-513, 495-505. DOI

Stella Mary, G., Sugumaran, P., Niveditha, S., Ramalakshmi, B., Ravichandran, P., & Seshadri, S. (2016). Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture, 5, 43–53. DOI

Sun, L., Wan, S., & Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406-413. DOI

Taherymoosavi, S., Joseph, S., Pace, B., & Munroe, P. (2018). A comparison between the characteristics of single- and mixed-feedstock biochars generated from wheat straw and basalt. Journal of Analytical and Applied Pyrolysis, 129, 123-133. DOI

Usevičiūtė, L., & Baltrėnaitė-Gedienė, E. (2021). Dependence of pyrolysis temperature and lignocellulosic physical-chemical properties of biochar on its wettability. Biomass Conversion and Biorefinery, 11, 2775–2793. DOI

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86. DOI

Waqas, M., Li, G., Khan, S., Shamshad, I., Reid, B. J., Qamar, Z., & Chao, C. (2015). Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environmental Science and Pollution Research, 22, 12114–12123. DOI

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergi, 47, 268-276. DOI

Yang, X., Weicheng, Ng., Wong, B. S. E., Baeg, G. H., Wang, C.-H., & Ok, Y. S. (2018). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178-185. DOI

Yuan, J.-H., Xu, R.-K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. DOI

Zaher, U., Buffiere, P., Steyer, J.-P., & Chen, S. (2009). A procedure to estimate proximate analysis of mixed organic wastes. Water Environment Research, 81(4), 407-415. DOI

Zhang, X., Zhang, S., Yang, H, Shao, J., Chen, Y., Feng, Y., Chen, H. (2015). Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar. Energy, 91, 903-910. DOI

Zhao, C., Qiao, X., Cao, Y., & Shao, Q. (2017). Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel, 205, 184-191. DOI

Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1-9. DOI

Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 112, 201-213. DOI

Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169-1179. DOI




DOI: http://doi.org/10.17503/agrivita.v41i0.3085

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.