The Yield Stability and Adaptability of Bambara Groundnut at Three Locations
Abstract
Varieties with high yield stability are required to increase the yield. This study examines the strength and adaptability of seven Bambara groundnut lines in three areas. The seven lines used are CCC 1.6, PWBG 6, PWBG 521, SS 342, SS 242, BBL 11, and TVSU 86 as checks. The research sites are Brawijaya University Experimental Station, Farmer field in Madiun and Indonesia Legumes, and Tuber Crop Research Institute (ILETRI) Research Station. Research is conducted from February to October 2020. The study used a randomized block design with three replications. The Eberhart-Russel and FinlayWilkinson methods were used to analyze stability and adaptability. The Genotype x Environmental interaction (GxE) results of the 7 Bambara groundnut lines are at 50% flowering time, seed weight per plant, 100-seed weight, yield, and harvest age. The stability and adaptability analysis shows that BBL 1.1 line is the variety with an earlier harvest period, highest yield potential, good stability, and wide adaptability. The CCC 1.1, PWBG 6, PWBG 5.2.1, and SS 2.4.2 production lines are stable in all experimental environments but low productivity. The SS 3.4.2 is suitable for planting in a production environment. TVSU 86 is ideal for producing in marginal habitats such as drought conditions.
Keywords
Full Text:
PDFReferences
Alghamdi, S. S. (2004). Yield stability of some soybean genotypes across diverse environments. Pakistan Journal of Biological Sciences, 7(12), 2109–2114. https://doi.org/10.3923/pjbs.2004.2109.2114
Alhamdi, M. F. F., Setiawan, A., Ilyas, S., & Ho, W. K. (2020). Genetic variability of Indonesian landraces of Vigna subterranea: Morphological characteristics and molecular analysis using SSR markers. Biodiversitas Journal of Biological Diversity, 21(9), 3929–3937. https://doi.org/10.13057/biodiv/d210902
Azam-Ali, S. N., Sesay, A., Karikari, S. K., Massawe, F. J., & Acuilar-Manjarez, J. (2001). Assessing the potential of an underutilized crop - A case study using bambara groundnut. J Exp Agric, 37, 433–472.
Begemann, F. (1988). Ecogeographic differentiation of bambara groundnut (Vigna subterranea) in the collection of the International Institute of Tropical Agriculture (IITA). Wissenschaftlicher Fachverlag. https://agris.fao.org/agris-search/search.do?recordID=US201300644704
Berchie, J. N., Opku, M., Adu-Dapaah, H., Agyemamg, A., & Sarkodie-Addo, J. (2012). Evaluation of five bambara groundnut (Vigna subterranea (L.) Verdc.) landraces to heat and drought stress at Tono Navrongo, upper east region of Ghana. Afr J Agric Res, 7, 250–256.
Chandra, K., Nandini, R., Gobu, R., Kumar, C. B., & Muthuraju, R. (2019). Insight into floral biology and ancillary characteristics of underutilized legume-Bambara groundnut [Vigna subterranea (L.) Verdc.]. Legume Research-An International Journal, 42(1), 96–101.
Collinson, S. T., Azam-Ali, S. N., Chavula, K. M., & Hodson, D. A. (1996). Growth, development and yield of bambara groundnut (Vigna subterranea) in response to soil moisture. J. Agric. Sci, 126, 307–318.
Damfami, A., & Namo, O. A. T. (2020). Bambara groundnut (Vigna subterranea (L.) Verd.): A review of its past, present and future role in human nutrition. J Agric For. Meteorol Res, 3(1), 274–281. https://www.scitcentral.com/documents/ce657ab255cb5ddcd0853ea198c1b42d.pdf
Draweel, M. M., Soegianto, A., Soetopo, L., & Kuswanto, K. (2021). Evaluation of some morphological criteria to drought tolerance on seedling of bambara groundnut [Vigna subterranea (L.) verdc.] using polyethylene glycol (PEG6000). Legume Research. https://doi.org/10.18805/LR554
Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
Farshadfar, E., Poursiahbidi, M. M., & Jasemi, M. (2012). Evaluation of phenotypic stability in bread wheat genotypes using GGE-biplot. International Journal of Agriculture and Crop Sciences, 4(13), 904–910. http://eprints.icrisat.ac.in/10856/1/IJACS_4_13_904-910_2012.pdf
Feldman, A., Ho, W. K., Massawe, F., & Mayes, S. (2019). Bambara groundnut is a climate-resilient crop: How could a drought-tolerant and nutritious legume improve community resilience in the face of climate change? In A. Sarkar, S. R. Sensarma, & G. W. VanLoon (Eds.), Sustainable Solutions for Food Security (pp. 151–167). Springer International Publishing. https://doi.org/10.1007/978-3-319-77878-5_8
Finlay, K., & Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742–754. https://doi.org/10.1071/AR9630742
Goli, A. E. F. (1995). Bibliographical review. In: Heller J, Bergmann F and Mushing J (Eds). Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna Subterranea (L.) Verdc.), 4–10.
Heller, J., Begemann, F., & Mushonga, J. (1997). Bambara groundnut [Vigna subterranea (L.) Verdc.]. Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut, Harare, Zimbabwe.
Hillocks, R. J., Bennett, C., & Mponda, O. M. (2012). Bambara nut: A review of utilisation, market potential and crop improvement. African Crop Science Journal, 20(1), 1–16. https://www.ajol.info/index.php/acsj/article/view/78601
Ijarotimi, S. O., & Esho, R. T. (2009). Comparison of nutritional composition and anti-nutritional status of fermented, germinated and roasted bambara groundnut (Vigna subterranea (L.) Verdc.). Br Food J, 111, 376–386.
Jackson, P., Robertson, M., Cooper, M., & Hammer, G. (1996). The role of physiological understanding in plant breeding: from a breeding perspective. Crop Res, 49(1), 11–37.
Jorgensen, S. T., Ntundu, W. H., Ouédraogo, M., Christiansen, J. L., & Liu, F. (2011). Effect of a short and severe intermittent drought on transpiration, seed yield, yield components, and harvest index in four landraces of bambara groundnut. International Journal of Plant Production, 5(1), 25–30.
Kaya, Y., Palta, C., & Taner, S. (2002). Additive main effects and multiplicative interactions analysis of yield performances in bread wheat genotypes across environments. Turkish Journal of Agriculture and Forestry, 26(5), 275–279. https://journals.tubitak.gov.tr/agriculture/abstract.htm?id=5779
Kuswanto, Waluyo, B., Pramantasari, R. A., & Canda, S. (2012). Koleksi dan evaluasi galur-galur lokal kacang bogor [Vigna subterranea (L.) Verdc]. Seminar Nasional Perhimpunan Ilmu Pemuliaan Indonesia (PERIPI) Fakultas Pertanian Universitas Brawijaya, 78–84.
Mabhaudhi, T., Chibarabada, T. P., Chimonyo, V. G. P., & Modi, A. T. (2018). Modelling climate change impact: A case of bambara groundnut (Vigna subterranea). Physics and Chemistry of the Earth, Parts A/B/C, 105(June 2018), 25–31. https://doi.org/10.1016/j.pce.2018.01.003
Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44. https://doi.org/10.3389/fphys.2013.00044
Massawe, F. J., Mwale, S. S., Azam-Ali, S. N., & Roberts, J. A. (2005). Breeding in bambara groundnut (Vigna subterranea (L.) Verdc.): Strategic considerations. African Journal of Biotechnology, 4(6), 463–471. https://www.ajol.info/index.php/ajb/article/view/15123
Mazahib, A. M., Nuha, M. O., Salawa, I. S., & Babiker, E. E. (2013). Some nutritional attributes of bambara groundnut as influenced by domestic processing. International Food Research Journal, 20(3), 1165–1171. https://www.proquest.com/openview/8f9bf9666fc8a934d88fc50868405c10/1?pqorigsite=gscholar&cbl=816390
Mkandawire, C. H. (2007). Review on bambara groundnut (Vigna subterranea (L.) Verdc.) production in Sub- Sahara Africa. Agric J, 2, 464–470.
Molosiwa, O., Basu, S. M., Stadler, F., Azam-Ali, S., & Mayes, S. (2013b). Assessment of genetic variability of bambara groundnut (Vigna subterranean (l.) Verdc.) Accessions using morphological traits and molecular markers. Acta Horticulturae, 979, 779–790. https://doi.org/10.17660/ActaHortic.2013.979.87
Murevanhema, Y. Y., & Jideani, V. A. (2013). Potential of bambara groundnut (Vigna subterranea (L.) Verdc.) milk as a probiotic beverage. Crit. Rev. Food Sci. Nutr, 53, 954–967.
Oyeyinka, S. A., Tijani, T. S., Oyeyinka, A. T., Arise, A. K., Balogun, M. A., Kolawole, F. L., Obalowu, M. A., & Joseph, J. K. (2018). Value added snacks produced from bambara groundnut (Vigna subterranea) paste or flour. LWT Food Sci. Technol, 88, 124–128.
Pungulani, L., Kadyampakeni, D., Nsapato, L., & Kachapila, M. (2012). Selection of high yielding and farmers’ preferred genotypes of bambara nut (Vigna subterranea (L.) Verdc) in Malawi. American Journal of Plant Sciences, 3(12A), 1802–1808. https://doi.org/10.4236/ajps.2012.312A221
Singh, R. ., & Chaudhary, B. D. (1979). Biometrical methods in quantitative genetic analysis. Kalyani Publishers. https://www.cabdirect.org/cabdirect/abstract/19801689021
Swaneveider, C. S. (1998). Bambara: Food for Africa. National Department of Agriculture of the ACRGrain Institute. Syukur, M., Sujiprihati, S., & Yunanti, R. (2012). Teknik pemuliaan tanaman (S. Nugroho & Febriani (eds.)). Penebar Swadaya.
Tadele, Z., & Assefa, K. (2012). Increasing food production in Africa by boosting the productivity of understudied crops. Agronomy, 2, 240–283.
Yan, W., & Hunt, L. A. (2001). Interpretation of genotype × environment interaction for winter wheat yield in Ontario. Crop Science, 41(1), 19–25. https://doi.org/10.2135/cropsci2001.41119x
DOI: http://doi.org/10.17503/agrivita.v44i1.3079
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.