The Evaluation of Sweetness, Starch and Sugar Concentrations of Ipomoea Batatas L. cv. Rancing from Specific Location in the Villages of Cilembu and Cimaung

Erly Marwani, Risti Desiyanti, Yeyet Setiawati

Abstract


In order to examine the potency of a non-typical land for cultivation of Cilembu sweet potato (Rancing cultivars of I. batatas) to generate a similar sweet taste with that when planted in its typical land, evaluation of sweetness, sugar and starch concentration of the cultivated sweet potato was carried out at Cimaung and Cilembu villages. Results indicated that concentration of starch in the fresh tuber that harvested at Cilembu and Cimaung were 37% and 35%, and decreased to 19.6% and 31.5%, within 5 weeks after storage, respectively. High Pressure Liquid Chromatography analysis showed that fresh sweet potato consisted of soluble sugar of fructose, glucose and sucrose, while baked sweet potato showed the presence of maltose, fructose, glucose and sucrose. The total soluble sugar in the freshly harvested sweet potato from Cilembu was higher than that of Cimaung, 4.0% compared to 2.6% and reach maximum to 9.4% and 6.0%, at 4 weeks after storage. Principle component analysis indicated that starch and sugar content significantly showed positive correlation with elevation, rainfall, soil nutrient content, C/N ratio and cation exchange capacity levels. The tubers produced from Cilembu had sweet taste, while those from Cimaung had normal taste.


Keywords


Cilembu sweet potato; PCA; Rancing cultivar; Sugar; Sweetness

Full Text:

PDF

References


Adu-Kwarteng, E., Sakyi-Dawson, E. O., Ayernor, G. S., Truong, V.-D., Shih, F. F., & Daigle, K. (2014). Variability of sugars in staple-type sweet potato (Ipomoea batatas) cultivars: The effects of harvest time and storage. International Journal of Food Properties, 17(2), 410–420. DOI

Anda, M., Suryani, E., Widaningrum, W., & Nursyamsi, D. (2018). Soil potassium nutrient, temperature and rainfall required to generate ‘honey taste’ of Cilembu sweet potato. Indonesian Journal of Agricultural Science, 19(1), 33. DOI

Badu, M., Ashok, P., Sasikala, K., & Patro, T. K. (2017). Physiological and biochemical variability studies among orange flesh sweet potato (Ipomoea batatas (L.) Lam.) genotypes. International Journal of Chemical Studies, 5(5): 2442-2447. PDF

Balai Penelitian Tanah. (2012). Petunjuk teknis analisis kimia tanah, tanaman, air dan pupuk. Badan Penelitian dan Pengembangan Pertanian, Kementrian Pertanian Republik Indonesia.

Betiku, E., Akindolani, O. O., & Ismaila, A. R. (2013). Enzymatic hydrolysis optimization of sweet potato (Ipomoea batatas) peel using a statistical approach. Brazilian Journal of Chemical Engineering, 30(3), 467–476. DOI

Buchholz, F., Kostić, T., Sessitsch, A., & Mitter, B. (2018). The potential of plant microbiota in reducing postharvest food loss. Microbial Biotechnology, 11(6), 971–975. DOI

Cepeda, I., Diaz, E., García, P., Tavera, M., Cervera, C. P., & Franco, A. P. (2016). Characterization of Sweet Potato (Ipomoea batatas L.) Starch from Two Clones and Evaluation of Its Properties for Industrial Uses. 2016 AIChE Annual Meeting, 16. website

Dinas Pertanian Kabupaten Bandung. (2018). Profil Pertanian. PDF

Direktorat Jenderal Kekayaan Intelektual. (2013). Indikasi Geografis Ubi Jalar Cilembu. Direktorat Jenderal Hak Kekayaan Intelektual, Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia, Jakarta. website

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. DOI

Kathabwalika, D. M., Chilembwe, E. H. C., & Mwale, V. M. (2016). Evaluation of dry matter, starch and beta-carotene content in orange-fleshed sweet potato (Ipomoea batatas L.) genotypes tested in three agro-ecological zones of Malawi. African Journal of Food Science, 10(11), 320-326. DOI

Lai, Y.-C., Huang, C.-L., Chan, C.-F., Lien, C.-Y., & Liao, W. C. (2013). Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). Journal of Food Science and Technology, 50(6), 1193–1199. DOI

Law-Ogbomo, K. E., & Osaigbovo, A. U. (2018). The performance and profitability of sweet potato (Ipomoea batatas L.) as influenced by propagule length and application rates of cattle dung in humid ultisols. Agro-Science, 16(1), 17. DOI

Lewthwaite, S. L., Sutton, K. H., & Triggs, C. M. (1997). Free sugar composition of sweetpotato cultivars after storage. New Zealand Journal of Crop and Horticultural Science, 25(1), 33–41. DOI

Marques, J. M., Da Silva, T. F., Vollu, R. E., Blank, A. F., Ding, G.-C., Seldin, L., & Smalla, K. (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 88(2), 424–435. DOI

Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A simple HPLC-ELSD method for sugar analysis in Goji berry. Journal of Chemistry, 2016, 1–5. DOI

Nabubuya, A., Namutebi, A., Byaruhanga, Y., Narvhus, J., Stenstrøm, Y., & Wicklund, T. (2012). Amylolytic activity in selected sweetpotato (Ipomoea batatas Lam) varieties during development and in storage. Food and Nutrition Sciences, 03(05), 660–668. DOI

Neumann, G., Bott, S., Ohler, M. A., Mock, H.-P., Lippmann, R., Grosch, R., & Smalla, K. (2014). Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Frontiers in Microbiology, 5. DOI

Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5(3), e01448. DOI

Onggo, T. M. (2006). Perubahan komposisi pati dan gula dua jenis ubi jalar nirkum "Cilembu" selama penyimpanan. Jurnal Bionatura, 8: 161-170.

Owusu-Mensah, E., Oduro, I., Ellis, W., & Carey, E. (2016). Cooking treatment effects on sugar profile and sweetness of eleven-released sweet potato varieties. Journal of Food Processing & Technology, 7(4), 1–6. DOI

Parker, K., Salas, M., & Nwosu, V. C. (2010). High fructose corn syrup: Production, uses and public health concerns. Biotechnology and Molecular Biology Review, 5(5), 71–78. DOI

Ravi, V., & Saravanan, R. (2012). Crop physiology of sweet potato. Fruit, Vegetable and Cereal Science and Biotechnology 6 (Special Issue 1), 17-29. PDF

Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping their microbiome: Global hotspots for microbial activity. Annual Review of Phytopathology, 53(1), 403–424. DOI

Senanayake, S. A., Ranaweera, K. K. D. S., Gunaratne, A., & Bamunuarachchi, A. (2013). Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L.) Lam) in Sri Lanka. Food Science & Nutrition, 1(4), 284–291. DOI

Shallenberger, R. S. (1993). Taste chemistry. Springer US. DOI

Shariffa, Y. N., Uthumporn, U., Karim, A. A., & Zaibunnisa, A. H. (2017). Hydrolysis of native and annealed tapioca and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. International Food Research Journal, 24(5), 1925–1933. PDF

Solihin, M. A., Sitorus, S. R. P., Sutandi, A., & Widiatmaka. (2016). Biophysic factors related to a local famous sweet potato variety (Ipomoea batatas L.) production: A study based on local knowledge and field data in Indonesia. American Journal of Agricultural and Biological Sciences, 11(4), 164–174. DOI

Solihin, M. A., Sitorus, S. R. P., Sutandi, A., & Widiatmaka, W. (2017). Karakteristik lahan dan kualitas kemanisan ubi jalar Cilembu. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 7(3), 251–259. DOI

Solihin, M. A., Sitorus, S. R. P., Sutandi, A., & Widiatmaka, W. (2018). Discriminating land characteristics of yield and total sugar content classes of Cilembu sweet potato (Ipomoea batatas L.). AGRIVITA Journal of Agricultural Science, 40(1), 15–24. DOI

Tangapo, A. M., Astuti, D. I., & Aditiawati, P. (2018). Dynamics and diversity of cultivable rhizospheric and endophytic bacteria during the growth stages of cilembu sweet potato (Ipomoea batatas L. var. Cilembu). Agriculture and Natural Resources, 52(4), 309–316. DOI

Taufik, I. I., & Guntarti, A. (2016). Comparison of reduction sugar analysis method in cilembu sweet potato (Ipomoea batatas l.) using luff schoorl and anthrone method. JKKI : Jurnal Kedokteran Dan Kesehatan Indonesia, 7(5), 219–226. DOI

Tihomirova, K., Dalecka, B., & Mezule, L. (2016). Application of conventional HPLC RI technique for sugar analysis in hydrolysed hay. Agronomy Research, 14(5), 1713–1719. PDF

Wei, S., Lu, G., & Cao, H. (2017). Effects of cooking methods on starch and sugar composition of sweetpotato storage roots. PLOS ONE, 12(8), e0182604. DOI

Zaidiyah, Z. (2014). Sucrose, reducing sugars,and carotenoid content of Aceh Besar sweet potato cultivars (Ipomoea batatas L). Jurnal Teknologi Dan Industri Pertanian Indonesia, 6(1). DOI




DOI: http://doi.org/10.17503/agrivita.v45i2.3067

Copyright (c) 2023 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.