Longday Photoperiod Accelerates Flowering in Indonesian Non-Flowering Shallot Variety

Fazat Fairuzia, Sobir Sobir, Awang Maharijaya, Masaki Ochiai, Kunio Yamada


The shallot flowering ability is essential to increase productivity by assembling superior varieties through the hybridization and botanical seed or true shallot seed (TSS). The photoperiod length greatly influences flowering in shallot, which plays a significant role in the flowering initiation. This research aims to study flowering responses with different photoperiods in shallots. Six shallot varieties: Lokananta, Bima Brebes, Rubaru, Palasa, Biru Lancor, and Batu Ijo, were grown in a greenhouse under a short-day photoperiod, 10 hours of natural condition photoperiod for 60 days. Furthermore, half of the plants are moved to long-day treatment. The temperature during plantation is around from 7-13°C (similar to Indonesia’s upland temperature). The results indicate that long-day photoperiod increased the shallot flowering response on the five shallot varieties tested, except Rubaru. Rubaru could not produce flowers under both photoperiod treatments 120 days after plantation (DAP). Lokananta variety is the most responsive variety to flower, even on short-day photoperiod. Palasa variety, which could not flower under Indonesian photoperiod conditions, could produce flowers on long-day treatment and underplanting conditions at low to moderate temperatures.


Short-day; Temperature; TSS

Full Text:



Anik, A. R., Salam, Md. A., & Rahman, S. (2017). Drivers of production and efficiency of onion cultivation in Bangladesh. Bulgarian Journal of Agricultural Science, 23(1), 34–41. Retrieved from https://www.agrojournal.org/23/01-05.pdf

Aprilia, I., Maharijaya, A., & Wiyono, S. (2020). Keragaman genetik dan ketahanan terhadap penyakit layu fusarium (Fusarium oxysporum f.sp cepae) bawang merah (Allium cepa L. var. aggregatum) Indonesia. Jurnal Hortikultura Indonesia, 11(1), 32–40. https://doi.org/10.29244/jhi.11.1.32-40

Askari-Khorasgani, O., & Pessarakli, M. (2019). Agricultural management and environmental requirements for production of true shallot seeds – a review. Advances in Plants & Agriculture Research, 9(2), 318–322. https://doi.org/10.15406/apar.2019.09.00441

Chung, P. (2019). Global market update: Onion and shallot. Retrieved from https://www.tridge.com/stories/global-market-update-onion-and-shallot.

Corbesier, L., Lejeune, P., & Bernier, G. (1998). The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: Comparison between the wild type and starchless mutant. Planta, 206(1), 131-137. https://doi.org/10.1007/s004250050383

Costa, J. M., Monnet, F., Jannaud, D., Leonhardt, N., Ksas, B., Reiter, I. M., … Genty, B. (2015). Open all night long: The dark side of stomatal control. Plant Physiology, 167(2), 289–294. https://doi.org/10.1104/pp.114.253369

Erel, R., Yermiyahu, U., Yasuor, H., Chamus, D. C., Schwartz, A., Ben-Gal, A., & Dag, A. (2016). Phosphorous nutritional level, carbohydrate reserves and flower quality in olives. PLoS ONE, 11(12), e0167591. https://doi.org/10.1371/journal.pone.0167591

Erny, Darwanto, D. H., Masyhuri, & Waluyati, L. R. (2019). Farmer’s behavior towards Lembah Palu shallot farm risks in Central Sulawesi, Indonesia. EurAsian Journal of BioSciences, 13(2), 931–936. Retrieved from https://scholar.google.co.id/citations?view_op=view_citation&hl=en&user=Cf6lldkAAAAJ&citation_for_view=Cf6lldkAAAAJ:BrmTIyaxlBUC

FAOSTAT. (2020). Statistical database. Food and Agriculture Organization of The United Nations. Retrieved from http://www.fao.org/faostat/en/#data/QC/visualize

Galván, G. A., Koning-Boucoiran, C. F. S., Koopman, W. J. M., Burger-Meijer, K., González, P. H., Waalwijk, C., … Scholten, O. E. (2008). Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. European Journal of Plant Pathology, 121, 499–512. https://doi.org/10.1007/s10658-008-9270-9

Galván, G. A., Wietsma, W. A., Putrasemedja, S., Permadi, A. H., & Kik, C. (1997). Screening for resistance to anthracnose (Colletotrichum gleosporioides Penz.) in Allium cepa and its wild relatives. Euphtyca, 95, 173–178. https://doi.org/10.1023/A:1002914225154

Hidayat, I. M., & Sulastrini, I. (2016). Screening for tolerance to anthracnose (Colletotrichum gloeosporioides) of shallot (Allium ascalonicum) genotypes. Acta Horticulturae, 1127, 89–96. https://doi.org/10.17660/ActaHortic.2016.1127.16

Hygrotech. (2010). Production guidelines of onions. Hygrotech Sustainable Solutions.

Idhan, A., Syam’un, E., Zakaria, B., & Riyadi, M. (2015). Potential selection of flowering and tuber production in fourteen onion varieties (Allium ascalonicum L.) at lowland and upland. International Journal of Current Research in Biosciences and Plant Biology, 2(7), 63–67. Retrieved from http://ijcrbp.com/vol-2-7/Abubakar%20Idhan,%20et%20al.pdf

Istiqomah, N., Barunawati, N., Aini, N., & Widaryanto, E. (2019). True shallot seed production of lowland shallot (Biru Lancor variety) under the application of seaweed extract and N fertilizer. Russian Journal of Agricultural and Socio-Economic Sciences, 6(9), 325-338. https://doi.org/10.18551/rjoas.2019-06.41

Joshi, R. (2018). Significance of guard cell in photosynthesis, a mechanism for food production in the form of carbohydrates in plants. International Journal of Creative Research Thoughts, 6(1), 513–517. Retrieved from https://ijcrt.org/viewfull.php?&p_id=IJCRT1801603

Khokhar, K. M. (2014). Flowering and seed development in onion—A review. Open Access Library Journal, 1(7), 1–13. https://doi.org/10.4236/oalib.1101049

Khokhar, K. M., Hadley, P., & Pearson, S. (2007). Effect of photoperiod and temperature on inflorescence appearance and subsequent development towards flowering in onion raised from sets. Scientia Horticulturae, 112(1), 9–15. https://doi.org/10.1016/j.scienta.2006.12.009

Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: Linking elements that control stomatal movement. New Phytologist, 203(1), 44–62. https://doi.org/10.1111/nph.12832

Krontal, Y., Kamenetsky, R., & Rabinowitch, H. D. (2000). Flowering physiology and some vegetative traits of short-day shallot: A comparison with bulb onion. The Journal of Horticultural Science and Biotechnology, 75(1), 35–41. https://doi.org/10.1080/14620316.2000.11511197

Lee, J. S. (2010). Stomatal opening mechanism of CAM plants. Journal of Plant Biology, 53(1), 19–23. https://doi.org/10.1007/s12374-010-9097-8

Manap, N. M. A., & Ismail, N. W. (2019). Food security and economic growth. International Journal of Modern Trends in Social Sciences, 2(8), 108- 118. https://doi.org/10.35631/IJMTSS.280011

Manik, F. (2016). Aplikasi BAP untuk meningkatkan produksi benih botani bawang merah (Allium ascalinocum) pada varietas Bima, Bauji, dan Rubaru di dataran rendah [Thesis]. Retrieved from https://repository.ipb.ac.id/handle/123456789/81553

Manwan, S. W., Nurjanani, & Thamrin, M. (2020). Effort to increase shallot productivity using true shallot seed (TSS) from the superior varieties supporting Proliga. IOP Conference Series: Earth and Environmental Science, 484(1), 012084. https://doi.org/10.1088/1755-1315/484/1/012084

Marlin, Maharijaya, A., Purwito, A., & Sobir. (2018). Molecular diversity of the flowering related gene (leafy) on shallot (Allium cepa var. aggregatum) and Allium relatives. Sabrao Journal of Breeding and Genetics, 50(3), 313–328. Retrieved from http://sabraojournal.org/wp-content/uploads/2018/09/SABRAO-J-Breed-Genet-50-3-313-328-MARLIN.pdf

Osnato, M., Cota, I., Nebhnani, P., Cereijo, U., & Pelaz, S. (2022). Photoperiod control of plant growth: Flowering time genes beyond flowering. Frontiers in Plant Science, 12, 805635. https://doi.org/10.3389/fpls.2021.805635

Palupi, E. R., Manik, F., & Suhartanto, M. R. (2017). Can we produce true seed of shallot (TSS) from small size shallot sets? Journal of Tropical Crop Science, 4(1), 26–31. https://doi.org/10.29244/jtcs.4.1.26-31

Rosliani, R., Suwandi, & Sumarni, N. (2005). Pengaruh waktu tanam dan zat pengatur tumbuh mepiquat klorida terhadap pembungaan dan pembijian bawang merah (TSS). Jurnal Hortikultura, 15(3), 192-198. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jhort/article/view/972

Sari, Y., Sobir, Syukur, M., & Dinarti, D. (2019). Induksi poliploid TSS (true shallot seed) bawang merah varietas trisula menggunakan kolkisin. Jurnal Hortikultura Indonesia, 10(3), 145–153. https://doi.org/10.29244/jhi.10.3.145-153

Setyowati, M., Sulistyianingsih, E., & Purwantoro, A. (2013). Induksi poliploidi dengan kolkisina pada kultur meristem batang bawang wakegi (Allium x wakegi Araki). Ilmu Pertanian, 16(1), 58–76. Retrieved from https://jurnal.ugm.ac.id/jip/article/view/2526

Shimazaki, K., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219–247. https://doi.org/10.1146/annurev.arplant.57.032905.105434

Shishido, Y., & Saito, T. (1976). Studies on the flower bud formation in onion plants, II. Effects of physiological conditions on the low temperature induction of flower bud on green plants. Journal of the Japanese Society for Horticultural Science, 45(2), 160-167. https://doi.org/10.2503/jjshs.45.160

Sopha, G. A., Widodo, W. D., Poerwanto, R., & Palupi, E. R. (2014). Photoperiod and gibberellins effect on true shallot seed formation. AAB BIOFLUX, 6(1), 70–76. Retrieved from http://www.aab.bioflux.com.ro/docs/2014.70-76.pdf

Sukasih, E., Setyadjit, & Musadad, D. (2018). Physico-chemical characteristics of shallot New-Superior Varieties (NSV) from Indonesia. IOP Conference Series: Earth and Environmental Science, 102, 012037. https://doi.org/10.1088/1755-1315/102/1/012037

Worldwide Elevation Finder. (2021). Elevation of Gifu, Gifu prefecture, Japan. Retrieved from https://elevation.maplogs.com/poi/gifu_gifu_prefecture_japan.75434.html

Yuliani, F. (2017). Respon morfologi dan fisiologi tanaman bawang merah (Allium cepa L.) terhadap cekaman salinitas [Thesis]. Retrieved from https://repository.ipb.ac.id/handle/123456789/87769

Zu, C., Yang, J., Li, Z., Wang, C., & Yu, H. (2018). Carbohydrate activity regulation of floral quantity during the juvenile phase in black pepper (Piper nigrum L.). BioRxiv, 414938. https://doi.org/10.1101/414938

DOI: http://doi.org/10.17503/agrivita.v44i2.3053

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.